EFFECT OF DIFFERENT COLCHICINE CONCENTRATIONS ON CHROMOSOME POLYPLOIDY BEHAVIOR OF GALL OAK (QUERCUS INFECTORIA OLIV.) BY USING MOLECULAR BIOLOGY

  • HISHYAR HAZIM ATROUSHI Dept. of Forestry, College of Agricultural Engineering Science. University of Duhok, Kurdistan Region-Iraq
  • FAROQ YOUSSEF SULEIMAN Director of Forestry and Rangeland in Duhok Province, Kurdistan Region-Iraq
Keywords: Quercus infectoria Oliv, Polypoid breeding, Seedling characters, SCoTPCR

Abstract

Gall oak has a large ecological adaptability landscape and social importance and it is share of the natural wealth and has great economic value. Polyploidy deducted in this study through pre-screened directly by determining stomata guard cell length then confirmed by quantifying the DNA content using SCoT-PCR analysis. Depending in the stomata length as method we found the maximum of tetraploids (4n) and mixoploids (3n) plants were induced in chlciploidy treatments 2000 and 3000 mgl-1 of colchicine and soaked for 96 h. and 24 h. SCoT-PCR can detect polyploidy in the Gall Oak and provides an alternative method for analyzing polyploid genotype and breeding. Ungerminated seeds increased with increasing colchicine concentrations and exposure period especially in colchiploidy (2000 and 3000 mgl-1 for 72 and 96 h.) as a result of the toxicity of the colchicine substance. Significant differences were observed between polyploids and diploids plants. The tetraploid plants, show superiority in it is phenotypical treaties were created taller and thicker seedlings stems and roots, had more yields of branch, leaves and roots per seedlings, thicker leaves and bigger leaves. Whereas, chemical and physiological characteristics, significant contents of chlorophyll increased in polyploid plants, which leads to greener leaf color, but decreased in the of tannins amount. Also, the stomata guard cells size increased but decreased in number per area. Inducing novel features by ploidy breeding is a powerful tool that can lead to commercial success in forest tree species

Downloads

Download data is not yet available.

References

Amr, A. S., Mousa N. A., Jalal A. Z., Mai A. A. (2021). HPLC/MS-MS Identification of Oak Quercus aegilops Root Tannins. Journal of Chemistry, vol. 2021, 10. https://doi.org/10.1155/2021/8882050
Anitha, K., Jawaharlal, M., John Joel, A. and Surendranath, R. (2017). Induction of polyploids and isolation of ploidy variants through stomatal parameters in bougainvillea (bougainvillea spp). International Journal of Agricultural Science and Research (IJASR). Vol. 7, Issue 1, 451-458.
Adhikari, S.; S. Saha; T. K. bandyopadhyay and P. Ghosh (2015). Efficiency of ISSR marker for characterization of cymbopogon gernplasm and their suitability in molecular barcoding. Plant systematic and Evalouation , 301:439-450.
Aree, A. A., Suliman, H. H., Saeed, H. S., and Dawod, N. A. (2021). Some of Phenotypic, physical and anatomical wood properties of Valonia Oak trees In Kurdistan-Iraq. Iraqi Journal of Agricultural Sciences, 52(3), 589–600. https://doi.org/10.36103/ijas.v52i3.1348
Askari, F., Azadi, A., Namavar-Jahromi, B., Tansaz, M., Mirzapour Nasiri, A., and Mohagheghzadeh, A. (2020). A comprehensive review about Quercus infectoria G. Olivier gall. Research Journal of Pharmacognosy, 7(1), 69-77.)
Beck, S. L., Dunlop, R. W., and Fossey, A. (2003). Stomatal length and frequency as a measure of ploidy level in black wattle, Acacia mearnsii (de Wild). Bot J Linn Soc 41:177–181
Chen, C., Hou, X., Zhang, H., Wang, G. and Tian, L. (2011). Induction of Anthurium andraeanum ‘‘Arizona’’ tetraploid by colchicine in vitro. Euphytica 181:137-145.
Chaicharoen, S., Satrabhandhu, A. and Kruatrachue, M. (1995). In vitro induction of polyploidy in white mulberry (Morus alba Var. S54) by colchicine treatment. J. Sci. Soc. Thailand. Vol. 21: 229-242.
Collard, B. C. Y. and Mackill, D. J. (2009). Start Codon Targeted (SCoT) polymorphism: A simple novel DNA marker technique for generating gene-targete markers in plants. Plant Molecular Biology 27: 86–93.
Cortés, A. J., Restrepo-Montoya, M., and Bedoya-Canas, L. E. (2020). Modern strategies to assess and breed forest tree adaptation to changing climate. Front. Plant Sci. 11:583323. doi: 10.3389/fpls.2020.583323
De Moura, L. C., Xavier, A., Viccini, L. F., Batista, D. S., de Matos, E. M., Gallo, R., ... and Otoni, W. C. (2020). Induction and evaluation of tetraploid plants of' Eucalyptus urophylla' clones. Australian Journal of Crop Science, 14(11), 1786-1793.
Dilipan, E., Papenbrock, J., and Thangaradjou, T. (2017). Random amplified polymorphic DNA (RAPD) finger prints evidencing high genetic variability among marine angiosperms of India. J. Mar Biol Asso UK 2017; 97:1307-15.
Dzialuk, A., Chybicki, I., Welc, M., Sliwinska, E., and Burczyk, J. (2007). Presence of triploids among oak species. Annals of botany, 99(5), 959–964. https://doi.org/10.1093/aob/mcm043
Dudits, D., Török, K., Cseri, A., Paul, K., Nagy, A.V., Nagy, B., Sass, L., Ferenc, G., Vankova, R., Dobrev, P., et al., (2016). Response of organ structure and physiology to autotetraploidization in early development of energywillow Salix viminalis. Plant Physiol. 170, 1504–1523.
Elyazid, D. M. A., and El-Shereif, A. R. (2014). In Vitro induction of polyploidy in Citrus reticulata Blanco. American Journal of Plant Sciences, 5(11), 1679.
Eng, W. H., Ho, W. S. and Ling, K. H. (2021). Effects of colchicine treatment on morphological variations of Neolamarckia cadamba. International Journal of Agricultural Technology 17(1):47 66.
Eng, W.H., and Ho, W.S., (2019). Polyploidization using colchicine in horticultural plants: a review. Sci. Hort., 246, 604-617. https://doi.org/10.1016/j.scienta.2018.11.010
Fathi. M. A, Hussein, S. H. M., and Mohamed, S. Y. (2013). Horticultural and molecular genetic evaluation of some peach selected strains cultivated underkalubiah governorate conditions. J Am Sci.;9(1s):12–23.
Ganie, S. H., Upadhyay, P., Das, S., and Sharma, M. P. (2015). Authentication of medicinal plants by DNA markers. Plant Gene. 4:83-99.
Gartland, K. M., Crow, R. M., Fenning, T. M., & Gartland, J. S. (2003). Genetically modified trees: production, properties, and potential. Journal of Arboriculture, 29(5), 259-266.
Ghasemi, M., Aelaei, M., Akbari Soltankohi, F., Minaei Chenar, H., and Bahrami Rad, E. (2021). Studies on polyploidy induction for improvement of quality traits in ornamental and medicinal plants. Central Asian Journal of Plant Science Innovation, 1(2), 76-90.
Gu, X. F., Yang, A. F., Meng, H., and Zhang, J. R. (2005). In vitro induction of tetraploid plants from diploid Zizyphus jujuba Mill. cv. Zhanhua. Plant Cell Rep 24:671–676
Guo, L., Xu, W., Zhang, Y., Zhang, J., and Wei, Z. (2017). Inducing triploids and tetraploids with high temperatures in Populus sect. Tacamahaca. Plant Cell Rep. 36, 313–326. doi: 10.1007/s00299-016-2081-0
He, L., Ding, Z., Jiang, F., Jin, B., Li, W., Ding, X., Sun J. and Lv, G. (2012). Induction and identification of hexadecaploid of Pinellia ternate. Euphytica, 186:479-488.
Joshi, C. P., Zhou, H., Huang, X. and Chiang, V. L. (1997). Context sequences of translation initiation codon in plants. Plant Mol. Biol., 35: 993–1001.
Kampfer, S., Lexer, Ch., Glo¨ssl, J., and Steinkellner, H. (1998). Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186.
Kang, X. and Wei, H. (2022). Breeding polyploid Populus: progress and perspective. Forestry Research 2:4 https://doi.org/10.48130/FR-2022-0004
Kerdsuwan, N., and Te-chato, S. (2012). Effects of colchicine on survival rate, morphological, physiological and cytological characters of Chang Daeng orchid (Rhynchostylis gigantean var. rubrum Sagarik) In Vitro. Journal of Agricultural Technology, 8(4), 1451-1460.
Kesic, L., Cseke, K., Orlovi´c, S., Stojanovi´c, D. B., Kosti´c, S., Benke, A., Borovics, A.. Stojni´c, S., Avramidou, E. V. (2021). Genetic Diversity and Differentiation of Pedunculate Oak (Quercus robur L.) Populations at the Southern Margin of Its Distribution Range—Implications for Conservation. Diversity, 13, 371. https://doi.org/10.3390/d13080371
Khwarahm, N. R. (2020). Mapping current and potential future distributions of the oak tree (Quercus aegilops) in the Kurdistan Region, Iraq. Ecological Processes 9 (1), 1-16. https://doi.org/10.1186/s13717-020-00259-0
Knudsen, L. L., Tibbitts, T. W. and Edward, G. E. (1977). Measurement of ozone injury by determination of chlorophyll concentration. Plant Physiol. Vol. 60: 606-608.
Iannicelli, J., Guariniello, J., Tossi, V. E., Regalado, J. J., Di Ciaccio, L., van Baren, C. M., lvarez, S. P., Escand, A. S., (2020). The “polyploid effect” in the breeding of aromatic and medicinal species. Sci Hortic., 260:108854. https://doi.org/10.1016/j.scienta.2019.108854
Islam, M. M., Deepo, D. M.. Nasif, S. O., Siddique, A. B.; Hassan, O., Siddique, A. B., Paul, N. C. (2022). Cytogenetics and consequences of polyploidization on different biotic-abiotic stress tolerance and the potential mechanisms involved. Plants. 11, 2684. https://doi.org/10.3390/plants11202684
Lattier, J., Chen, H., Contreras, R.N. (2019). Variation in genome size, ploidy, stomata, and rDNA signals in Althea. J. Am. Soc. Hortic. Sci.144, 130–140
Lavania, U. C., et al., (2012). Autopolyploidy differentially influences body size in plants, but 374 facilitates enhanced accumulation of secondary metabolites, causing increased cytosine 375 methylation. Plant J., 71(4), 539-549. https://doi:10.1111/j.1365-313X.2012.05006.x

Lertsutthichawan, A., Ruamrungsri, S., Duangkongsan,W., Saetiew, K., (2017). Induced mutation of chrysanthemum by colchicine. Int. J. Agric. Technol., 13, 2325-2332.
Li, M., Ding, B., Huang, W., Pan, J., Ding, Z., & Jiang, F. (2018). Induction and Characterization of Tetraploids from Seeds of Bletilla striata (Thunb.) Reichb. f. BioMed research international.
Liqin, G., Jianguo, Z., Xiaoxia, L., and Guodong, R. (2019). Polyploidy-related differential gene expression between diploid and synthesized allotriploid and allotetraploid hybrids of Populus. Molecular Breeding, 39(5), 1-15.
Liu, Li, Z. G., and Bao, M. (2007): Colchicine-induced chromo¬some doubling in Platanus acerifolia and its effect on plant morphology. Euphytica, 157: 145–154.
Lu, S., Lu, X., Zhao, W., Liu, Y., Wang, Z., and Omasa, K. (2015). Comparing vegetation indices for remote chlorophyll measurement of white poplar and Chinese elm leaves with different adaxial and abaxial surfaces. J Exp Bot 66: 5625–5637
Lu, M., Zhang, P., Wang, J., Kang, X., Wu, J., Wang, X., et al., (2013). Induction of tetraploidy using high temperature exposure during the first zygote division in Populus adenopoda Maxim. Plant Growth Regul. 72, 279–287. https://doi: 10.1007/ s10725-013-9859-7
Hamid Reza, H., Chehrazi, M., Sorestani, M. M. and Ahmadi, D. (2013). Polyploidy and comparison of diploid and autotetraploid seedling of madagascar periwinkle (Catharanthus roseus cv. alba). International research Journal of Applied and Basic Sciences. Vol. 4 (2): 402-406.
Martin–Trillo, M., and J. M. Martinez–Zapater. (2002). Growing up fast: Manipulating the generation time of trees. Curr. Op. Biotechnol.13:151–155.
Madani, H., Escrich, A., Hosseini, B., Sanchez-Muñoz, R., Khojasteh, A. and Palazon, J. (2021). Effect of polyploidy induction on natural metabolite production in medicinal plants. Biomolecules, 11(6), 899. 17; 11 (6):899. https://doi: 10.3390/biom11060899. PMID: 34204200; PMCID: PMC8234191.
Manzoor. A., Ahmad, T., Bashir, M. A., Hafiz, I. A. and Silvestri, C. (2019). Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants (Basel). Jun 28;8(7):194. https://doi: 10.3390/plants8070194. PMID: 31261798; PMCID: PMC6681243.
Manzoor, A., Ahmad, T., Bashir, M. A., Baig, M. M. Q., Quresh, A. A., Shah, M. K. N., & Hafiz, I. A. (2018). Induction and identification of colchicine induced polyploidy in ‘White Prosperity’. Folia Horticulturae, 30(2), 307-319.
Maritz, T. (2008). The induction of polyploids in Eucalypts and Eucalypt hybrids. University of KwaZulu-Natal. Available at: http://www.csir.co.za/nre/tree_improvement/docs/Tree_%20breeding_brochure_low%20res_for_web.pdf
Mason, A. S. and Wendel, J. F. (2020). Homoeologous exchanges, segmental allopolyploidy, and polyploid genome evolution. Front. Genet. 11:1014. doi: 10.3389/fgene.2020.01014
Mohamed, S.Y., Shoaib, R. M. and Gadalla, N. O. (2015). Selection of some seedling apricot strains at Al-Amar region. Journal of Applied Sciences, 15 (2): 195-204
Nei, M. and Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad .Sci., USA,76: 5269- 5273
Niazian, M. and Nalousi, A. (2020). Artificial polyploidy induction for improvement of ornamental and medicinal plants. Plant Cell, Tissue and Organ Culture (PCTOC). 142. 10.1007/s11240-020-01888-1.
Niemiec, S. S., Ahrens, G. R., Willits, S. and Hibbs. D. E. (1995). Hardwood of the pacific Northwest research contribution 8, Collage of Forestry, Research Laboratory, Oregon State University
Nixon, K. C. (1997). Quercus. In: Flora of North America editorial committee (eds.), Flora of North America north of Mexico, vol. 3: 445–506. –New York: Oxford Univ. Press.
Paaver, U., Matto, V., and Raal, A. (2010). Total tannin content in distinct Quercus robur L. galls. J Med Plants Res, 4(8), 702-705.
Parsons, J. L., Martin, S. L., James, T., Golenia, G., Boudko, E. A., & Hepworth, S. R. (2019). Polyploidization for the genetic improvement of Cannabis sativa. Frontiers in plant science, 10.
Pei, Y., Yao, N., He, L., Deng, D., Li, W., & Zhang, W. (2019). Comparative study of the morphological, physiological and molecular characteristics between diploid and tetraploid radish (Raphunas sativus L.). Scientia Horticulturae, 257, 108739.
Price, M. L., and Butler, L. G. (1977). Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J. Agric. Food Chem. 25: 1268-1273.
Omar, O. M. (2008). Induction of chromosomal polyploidy and early evaluation of Ceratonia siliqua L. and Robinia pseudoacacia L. transplants. M.Sc. thesis, forest science, colleges of agriculture and forestry, Mosul University.(In Arabic) (2009).
Sadhukhan, R., Ganguly, A., Singh, P. K. and Sarkar, H. K. (2014). Study of induced polyploidy in african marigold (Tagetes crecta L.). Environment & Ecology 32 (4): 1219-1222.
Salma, U., Kundu, S., and Mandal, N. (2017). Artificial polyploidy in medicinal plants: advancement in the last two decades and impending prospects. J. Crop. Sci. Biotech., 20, 9-19. https://doi.org/10.1007/s12892-016-0080-1
Sariozlu, N. and Kivanc, M. (2011). Gallnuts (Quercus infectoria Oliv. and Rhus chinensis Mill.) and their usage in health, nuts and seeds in health and disease prevention. 505-511. 10.1016/B978-0-12-375688-6.10060-X.)
Sattler M. C., Carvalho C. R. and Clarindo W. R. (2016). The polyploidy and its key role in plant breeding. Planta 243(2), 281-296.
Sawant, S. V., Singhl, P. K., Gupta, S. K., Madnala, R. and Tuli, R. (1999).Conserved nucleotide sequences in highly expressed genes in plants. J. Genet., 78:123 131.
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675.
Shang, J., Xue, Y. X., Song, L. J., Liu, C. H., Li, D. L., Zhang, H. Y., et al. (2020). Ploidy, genotype and gender effects of functional leaf and stomatal traits on short branches in full-sib hybrids between section Tacamahaca and sect. Aigeiros of Populus. J. Beijing For. Univ. 42, 11–18.
Sheet, S., Ghosh, K., Acharya, S., Kim, K. P., & Lee, Y. S. (2018). Estimating genetic conformism of Korean mulberry cultivars using random amplified polymorphic DNA and inter-simple sequence repeat profiling. Plants, 7(1), 21.
Solla, A., Milanović, S., Gallardo, A., Bueno, A., Corcobado, T., Cáceres, Y., ... & Pulido, F. (2016). Genetic determination of tannins and herbivore resistance in Quercus ilex. Tree genetics & genomes, 12, 1-12.
Stanys, V., Weckman, A., Staniene, G., and Duchovskis, P. (2006). In vitro induction of polyploidy in Japanese quince (Chaenomeles japonica). Plant Cell Tiss Org Cult 84:263–268
Stein, W. 1. (1990). Quercus garryana (Dougl. ex Hook.): Oregon White Oak. In: RM. Bums & B.H. Honkala (Technical Coordinators), Silvics of North America, Vol.
Steinkellner, H., Fluch, S., Turetschek, E., Lexer, C., Streiff, R., Kremer, A., et al., (1997). Identification and characterization of (GA/CT)n microsatellite loci from Quercus petraea. Plant Molecular Biology 33: 1093–1096.
Suliman, H. H. (2020). Ph. D. Thesis titled (The effect of colchicine concentrations with different soaking and dropping periods on the seedling characteristics of Robinia pseudoacacia L. and Cercis siliquastrum L.). Collage of Agriculture Engineering Science, University of Duhok.
Talebi, S.F., Saharkhiz, M.J., Kermani, M.J., Sharifi, Y., and Raouf, F. F. (2017). Effect of different antimitotic agents on polyploid induction of Anise Hyssop (Agastache Foeniculum L.). - Caryologia, 70(2): 184-193.
Tambong, J. T., Sapra, V. T. & Garton, S. (1998). In Vitro induction of tetraploids in colchicine-treated cocoyam plantlets. Euphytica, 104, 191–197.
Thao, N. T. P., Ureshino, K., Miyajima, I., Ozaki, Y., & Okubo, H. (2003). Induction of tetraploids in ornamental Alocasia through colchicine and oryzalin treatments. Plant cell, tissue and organ culture, 72(1), 19-25.
Toma, R., H. (2015). Induction of chromosomal polyploidy and early evaluation of valonia oak (Quercus aegilops L.) Transplants. M.Sc. thesis, forest science, colleges of agriculture, Duhok University.
Warner, D. A., and Edwards, G. E. (1989). Effects of polyploidy on photosynthetic rates, photosynthetic enzymes, contents of DNA, chlorophyll, and sizes and numbers of photosynthetic cells in the C4 dicot Atriplex confertifolia. Plant physiology, 91(3), 1143-1151.
Xiong, F. Q., Zhong, R. C., Han Z. Q. and Jiang, J. (2011). Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol. Biol. Rep, 38: 3487- 3494.
Xu, C., Huang, Z., Liao, T., Li, Y. and Kang, X. (2016). In vitro tetraploid plants regeneration from leaf explants of multiple genotypes in Populus. Plant Cell, Tissue and Organ Culture, 125:1-9.
Zlesak, D. C., Thill, C. A., & Anderson, N. O. (2005). Trifluralin-mediated polyploidization of Rosa chinensis minima (Sims) Voss seedlings. Euphytica, 141, 281-290.
Zhou, H. W., Zeng, W. D. and Yan, H. B. (2017). In vitro induction of tetraploids in cassava variety ‘Xinxuan 048’ using colchicine. Plant Cell, Tissue and Organ Culture, 28:723-729
Published
2023-07-04
How to Cite
ATROUSHI, H. H., & SULEIMAN, F. Y. (2023). EFFECT OF DIFFERENT COLCHICINE CONCENTRATIONS ON CHROMOSOME POLYPLOIDY BEHAVIOR OF GALL OAK (QUERCUS INFECTORIA OLIV.) BY USING MOLECULAR BIOLOGY. Journal of Duhok University, 26(1), 244-260. https://doi.org/10.26682/ajuod.2023.26.1.26
Section
Agriculture and Veterinary Science