SAPROPHYTIC COMPETITION OF SOIL MICROFLORA AND Rhizoctonia Solani IN THE ROTATING AMENDED COMPOSTS PLANTED BY TOMATO

  • ASMAR, A. YOUSEF Dept. Plant Protection, College of Agriculture, University of Duhok, Kurdistan Region-Iraq
  • WAZEER A. HASSAN Dept. Plant Protection, College of Agriculture, University of Duhok, Kurdistan Region-Iraq
  • KHADEEJA A. SAIDO Dept. Plant Protection, College of Agriculture, University of Duhok, Kurdistan Region-Iraq
  • IBRAHIM E. TAHER Dept. Plant Protection, College of Agriculture, University of Duhok, Kurdistan Region-Iraq
Keywords: T. harzianum., microbial activity., compost;

Abstract

The succession competitiveness of predominant saprophytic fungi, and bacteria colonized different amended composts, inoculated with propagules of Rhizoctonia solani were investigated after 20 and 40 days of the first and second rotation of tomato seedlings. Fungal communities of Alternaria alternata , Aspergillus flavus, A. niger, A. terreus, Fusarium sp., Penicillium spp., and a bacterium of Bacillus subtilis were isolated from substrates of pine leaf litter, mushroom's compost1, and control of (sandy loam soil). Microbial population occurred in a range of 1.88-2.4×10 4 cfu gm -1, this density decline in the mushcom 2 to 0.52 and 0.75×10 4 cfu gm -1 during both rotations, respectively.

Amended composts with formulation of T. harzianum (T.h) and B. subtilis 10% at 10gm/kg tomato seeds were instigated the saprobes competition during both rotations when insulated with 2.3 and 2.4×10 4 cfu gm-1. T. viride which was also heartening a comparable development  of competitive saprobes particularly in the second rotation which observed with 1.87 and 2.15×10 4 cfu gm -1The highest frequency for each of Penicillium spp.,with 16.3 ×10 4 cfu gm -1and B. subtilis with 18.7 ×10 4 cfu gm -1 were detected in the first rotation colonizing substrates of pine leaf litter and  ( mushcom 1 ) amended with T. h. & B. sublilis. Therefore, these species are capable to develop and compete the pathogen in space and nourishment even under conditions of nutrient  deficiency, hence, colonized of Penicillium spp in non-amended sandy loam soil remarkably with 5.33×104 cfu gm-1.

Downloads

Download data is not yet available.

References

-Ashraf, R.; Shahid, F. and Ali, T.A.(2007). Association of fungi, bacteria and actinomycetes with different compost. Pakistan J. of Botany 39 : 2141-2151.
-Borrero, C.; Trillas, M.I.; Ordovs, J.; Tello, J. and Aviles, M.(2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology7 (4):249-260.
-Chung, Y.R.and Hoitink, A.J. (1990). Interactions between thermophilic fungi and Trichoderma hamatuim suppression of Rhizoctonia damping –off in a bark compost- amended container medium. Phytopathology 80:73-77.
-Dhahir, H. M. (2013). Effect of compost media, fertilization and Trichoderma harzianum on Rhizoctonial damping – off. M. Sc. Thesis, Faculty of Agriculture and Forestry , University of Duhok. 86pp.
-Dukare, A. S.; Prasanna, R.; Dubey, S.C.; Naim,L.;Chaudhary,V.; Singh, R. and Saxena, A. K.(2011).Evaluation novel microbes amended compost as biocontrol agents in tomato. Crop protection 30: 436-442.
-Fravel, D.; Olivain,C. and Alabouvette, C. (2003). Fusarium oxysporum and its biocontrol.New Phytol.157:271-279.
-Gunphae, c.; Sasaki, M. ; Shoda, M.; and Kubota, H. 1990. Characteristics of B. subtilis isolated from compost suppressing phytopathogenic microorganisms. Soil Science and plant nutrition 36(4):575-586S
-Haggag, W.M. (2002). Sustainable agriculture management of plant diseases. Journal of Biological Sciences 2: 280-284.
-Hassan, W. A. and Yousif, A.A. (2013). Soil recolonization by saprophytic fungi after solarization and soil amendments. Proceeding of the 1st International Scientific Conference. University of Zakho, April , P. 23-25.
-Hassan, W. A.; Taher, I. E.; Saido, K. A. and Ali, A. S. (2015). Antagonism succession of Trichoderma against Rhizoctonia damping-off on tomato in composted container media. Bull. Iraqi Nat. Hist. Mus.. 13(4):41-44 .
-Hoitink, A.J. (1990). Production of disease suppressive compost and container media, and microorganisms culture for use there in. U.S. Patent No. 4,960,348
-Hoitink, H. A. J.; Stone, A. G. and Han, D. Y.(1997). Suppression of plant diseases by composts. Hort. Science. 32:184-187.
-Hoitink, H.A. J. and Boehm, M.J. (1999). Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annual Review of Phytopathology 37: 427-446.
-Kaewchai, S.; Soylong, K. and Hyde, K. D.(2009). Myco-fungicides and fungal biofertilizers. Fungal Divers 38:25-60.
-Kinselia K; Schulthes, C. P; Morris, T. F. and Stuart, J. D. (2010).Rapid quantification of B. subtilis antibiotics in the rhizosphere. Soil Biology and Biochemestry 42(7). 1009-1192.
-Litterick, A. M.; Harrier, L.; Wallace, P.; Waston, C. A. and Wood, M. (2004). The role of un composted materials, composts, manures, and composts extracts in reducing pest and disease incidence and severity in sustainable temperature agriculture and horticulture crop production – a review. Critical Reviews in plant sciences 23: 453-479.
-Maheshwari, R. ;Kamalam P. T. and B. Alasubramanyam P. V. (1987). The biogeography of thermophilic fungi. Current Science 56 : 151- 155.
-Maheshwari, R.; Bhardwaj, G. and Bhat, M. K. (2000).Thermophilic fungi: Their Physiology and enzymes. Micrbiol. Mol. Biol. Rev. 63, 461-488.
-Mouchacca, J. (1997). Thermophilic fungi: biodiversity and taxonomic status. Cryptogrammic Mycol 18:19–69.
-Noble, R. (2011). Risks and benefits of soil amendment with composts in relation to plant pathogens. Australasian Plant Pathology. 40:157-167.
-Panahian, GR, Rahnama, K. and Jafari, M. (2012). Mass production of Trichoderma spp., and application. Int. Res. J. Appl. Basic Sci. 3 (2): 292-298.
-Papavizas, G. C. (1985). Trichodermaand Gliocladium: biology , ecology, and potential for biocontrol . Annual Review Phytopathology.23 : 25- 54.
-Sabaratnam, S. and Traquair, J. A. (2002). Formulation of Streptomyces biocontrol agent for the suppression of Rhizoctonia damping off in tomato transplants. Biological control 23: 245-253.
-Sabuquillo, P., De Cal, A., Melgarejo, P.( 2005). Dispersal improvement of a powder formulation of Penicillium oxalicum, a biocontrol agent of tomato wilt. Plant Disease. 89: 1317-1323.
-Sallam, N. M. A. , Abo- Elyousr, K. A. M. and Hassan, M. A. E. ( 2008). Evaluation of Trichoderma species as biocontrol agent for damping – off and wilt diseases of Phaseolus vulgaris L. and efficacy of suggested formula . Egypt J. Phytopathol. 36 ( 1-2) : 81-93.
-Samuels, G. J. ( 1996). Trichoderma: a review of biology and systematic of the genus. Mycology Research 100: 923-953.
-Scheuella, S. J.; Sullivan, D. M. and Mahaffee, W.F.(2005). Suppression of seedling damping-off caused by Pythium ultimum, P. irregular, and Rhizoctonia solani in container media amended with a diverse range of Pacific Northwest compost sources. Phytopathology 95: 306-315.
-Singh, V.; Joshi, B. B.; Awasthi, S. K.; Srivastava, S. N. (2008). Ecofriendly management of red rot disease of sugarcane with Trichoderma strains . Sugar Tech. 10(2) : 158- 161.
-Sohail, M.; Naseeb, S.;Sherwani, S. K.; Sultana, S.; Aftab, S.; Shahzad, S.; Ahmed, A. and Khan, S.A.(2009). Distribution of hydrolytic enzymes among native fungi: Aspergillus the pre-dominate genus of hydrolase producer. Pakistan Journal of Botany 41(5):2567-2582.
-Stevens C. ; Khan V. A. ; Rodriguez- Kabana R. ; Ploper L. D. ; Backman P. A. ; Collins D. J. ; Brown J. E. ; Wilson M.A. and Igwegbe E. C. K. (2003). Integration of soil solarization with chemical , biological and cultural control for the management of soil borne disease of vegetables. Plant and soil 253 : 493- 506.
-Viterbo, A.; Inbar, J.; Hadar, Y. and Chet,I. (2007). Plant disease biocontrol and induced resistance via fungal mycoparasites. In:Kubicek CP, Druzhhinina IS(eds) Environmental and microbial relationships, the mycota, 2ndedn. Vol.5 Springer-Verlag, Berlin, pp127-146.
-Wang, F.Z.; Fang, Y.C.; Zhu, T.J.; Zhang, M. ; Lin, A.Q.; Gu, Q.Q. and Zhu, W. M. ( 2008). Seven new prenylated indole diketopiperazine alkaloids from holothurians derived fungus Aspergillus fumigates .Tetrahedorm. 64: 7986-7991.
-Xiao- Jun Li ;QiangZh.; An- Ling Zh. and Jin- Ming G.( 2012). Metabolites from Aspergillus fumigates , an Endophytic Fungus Associated with Melia azedarach, and Their Antifungal, Anti feed ant , and Toxic Activities. Journal of Agricultural and Food Chemistry.60: 3424- 3431.
-Yu, J.; Cleveland, T.; Nierman, W. and Bennett, J. (2005). Aspergillus flavus genomics: gateway to human and animal health, food safety, and crop resistance to diseases. Rev.Iberoam. Micol. 22: 194-202.
Published
2019-01-01
How to Cite
YOUSEF, A. A., HASSAN, W. A., SAIDO, K. A., & TAHER, I. E. (2019). SAPROPHYTIC COMPETITION OF SOIL MICROFLORA AND Rhizoctonia Solani IN THE ROTATING AMENDED COMPOSTS PLANTED BY TOMATO. Journal of Duhok University, 21(1), 57-66. https://doi.org/10.26682/avuod.2019.21.1.7
Section
Agriculture and Veterinary Science