APPLICATION OF DIGITAL IMAGE CORRELATION METHOD IN MATERIALS - TESTING AND MEASUREMENTS: A REVIEW

  • MERNA ALEC ZAYA Dept. of Surveying Engineering, College of Engineering, University of Duhok, Kurdistan Region–Iraq
  • SARHAT M. ADAM Dept. of Surveying Engineering, College of Engineering, University of Duhok, Kurdistan Region–Iraq
  • FARSAT HEETO ABDULRAHMAN Dept. of Surveying Engineering, College of Engineering, University of Duhok, Kurdistan Region–Iraq
Keywords: Digital Image Correlation (DIC), strain, displacement, concrete cracks, concrete fracture

Abstract

Digital image correlation (DIC) is a non-contact optical approach that employs tracking and image registration techniques to evaluate image alterations within two or three dimensions precisely. The DIC approach's primary focus revolves around identifying similarities between images that have undergone deformation, commonly referred to as the "degraded image," and images that have remained unchanged, known as the "Reference image." This approach is utilized in diverse scientific and technical disciplines to measure full-field displacement and strains. DIC is widely recognized as a valuable and efficient technique for quantifying in-plane deformation. Moreover, DIC is currently being utilized to monitor the behavior of concrete before fractures, including the propagation and displacement of cracks. Additionally, new applications of DIC are continuously being discovered. This paper aims to review the various applications of DIC and compare its capabilities with conventional measurement techniques, such as gauges and transducers, in the context of material testing and deformation measurement

Downloads

Download data is not yet available.

References

Aghlara, R., & Tahir, M. M. (2018). Measurement of strain on concrete using an ordinary digital camera. Measurement, 126, 398-404. doi:https://doi.org/10.1016/j.measurement.2018.05.066
AL-KAMAKI, Y. S., AL-MAHAIDI, R., & BENNETTS, I. (2017). STRAIN EFFICIENCY OF CARBON FIBRE REINFORCED POLYMER-CONFINED RC COLUMNS. Journal of Duhok University, 484-497. doi:https://doi.org/10.26682/sjuod.2017.20.1.43
Al-Kamaki, Y. S. S. (2021). Ultimate strain models derived using a Digital Image Correlation (DIC) system for preloaded RC columns subjected to heating and cooling and confined with CFRP sheets. Journal of Building Engineering, 41, 102306. doi:https://doi.org/10.1016/j.jobe.2021.102306
Alam, S., Loukili, A., & Grondin, F. (2012). Monitoring size effect on crack opening in concrete by digital image correlation. European journal of environmental and civil engineering, 16(7), 818-836. doi:https://doi.org/10.1080/19648189.2012.672211
Baldi, A., & Bertolino, F. (2015). Experimental analysis of the errors due to polynomial interpolation in digital image correlation. Strain, 51(3), 248-263. doi:https://doi.org/10.1111/str.12137
Bigger, R., Blaysat, B., Boo, C., Grewer, M., Hu, J., Jones, A., . . . Schmidt, T. (2018). A good practices guide for digital image correlation. Comput. Sci.
Bing, P., Hui-Min, X., Bo-Qin, X., & Fu-Long, D. (2006). Performance of sub-pixel registration algorithms in digital image correlation. Measurement science and technology, 17(6), 1615. doi:https://doi.org/10.1088/0957-0233/17/6/045
Bisby, L., Take, W., & Caspary, A. (2007). Quantifying strain variation in FRP confined concrete using digital image correlation: Proof-of-concept and initial results. Paper presented at the Asia-Pacific conference on FRP in structures (APFIS 2007). Dept of Civil Eng. Queen’s University, Canada.
Biswal, S., & Ramaswamy, A. (2016). Measurement of existing prestressing force in concrete structures through an embedded vibrating beam strain gauge. Measurement, 83, 10-19. doi:https://doi.org/10.1016/j.measurement.2016.01.031
Blaber, J., Adair, B., & Antoniou, A. (2015). Ncorr: open-source 2D digital image correlation matlab software. Experimental Mechanics, 55(6), 1105-1122. doi:https://doi.org/10.1007/s11340-015-0009-1
Bomarito, G., Hochhalter, J., Ruggles, T., & Cannon, A. (2017). Increasing accuracy and precision of digital image correlation through pattern optimization. Optics and Lasers in Engineering, 91, 73-85. doi:https://doi.org/10.1016/j.optlaseng.2016.11.005
Bossuyt, S. (2013). Optimized patterns for digital image correlation Imaging Methods for Novel Materials and Challenging Applications, Volume 3 (pp. 239-248): Springer.
Boulekbache, B., Hamrat, M., Chemrouk, M., & Amziane, S. (2015). Failure mechanism of fibre reinforced concrete under splitting test using digital image correlation. Materials and structures, 48(8), 2713-2726. doi:https://DOI10.1617/s11527-014-0348-x
Bourcier, M., Bornert, M., Dimanov, A., Héripré, E., & Raphanel, J. (2013). Multiscale experimental investigation of crystal plasticity and grain boundary sliding in synthetic halite using digital image correlation. Journal of Geophysical Research: solid earth, 118(2), 511-526. doi:https://doi.org/10.1002/jgrb.50065
Bruck, H., McNeill, S., Sutton, M. A., & Peters, W. (1989). Digital image correlation using Newton-Raphson method of partial differential correction. Experimental Mechanics, 29(3), 261-267.
Caggegi, C., Sciuto, D., & Cuomo, M. (2018). Experimental study on effective bond length of basalt textile reinforced mortar strengthening system: Contributions of digital image correlation. Measurement, 129, 119-127. doi:https://doi.org/10.1016/j.measurement.2018.07.003
Chu, T., Ranson, W., & Sutton, M. A. (1985). Applications of digital-image-correlation techniques to experimental mechanics. Experimental Mechanics, 25(3), 232-244.
Cintrón, R., & Saouma, V. (2008). Strain measurements with the digital image correlation system Vic-2D. System, 106, 2D.
Corr, D., Accardi, M., Graham-Brady, L., & Shah, S. (2007). Digital image correlation analysis of interfacial debonding properties and fracture behavior in concrete. Engineering Fracture Mechanics, 74(1-2), 109-121. doi:https://doi.org/10.1016/j.engfracmech.2006.01.035
Correlated Solutions. (2009). Vic-2D-2009-Guide.
Coșa, A., Hegheș, B., Negruțiu, C., & Kiss, Z. (2020). Strain and Displacement Measurements in Reinforced Self-Compacting Concrete Beams with Openings Using Digital Image Correlation Technique. Paper presented at the Multidisciplinary Digital Publishing Institute Proceedings.
Crammond, G., Boyd, S., & Dulieu-Barton, J. (2013). Speckle pattern quality assessment for digital image correlation. Optics and Lasers in Engineering, 51(12), 1368-1378. doi:https://doi.org/10.1016/j.optlaseng.2013.03.014
Deng, L., & Zhao, R. (2013). A vibration analysis method based on hybrid techniques and its application to rotating machinery. Measurement, 46(9), 3671-3682. doi:https://doi.org/10.1016/j.measurement.2013.07.014
Dong, Y., & Pan, B. (2017). A review of speckle pattern fabrication and assessment for digital image correlation. Experimental Mechanics, 57(8), 1161-1181. doi:https://DOI10.1007/s11340-017-0283-1
Dutton, M., Take, W. A., & Hoult, N. A. (2014). Curvature monitoring of beams using digital image correlation. Journal of Bridge Engineering, 19(3), 05013001. doi:https://doi.org/10.1061/(ASCE)BE.1943-5592.0000538
Eberl, C., Thompson, R., Gianola, D., & Bundschuh, S. (2006). Digital image correlation and tracking with Matlab. Matlab Central file exchange.
Fayyad, T. M., & Lees, J. M. (2014). Application of digital image correlation to reinforced concrete fracture. Procedia Materials Science, 3, 1585-1590. doi:https://doi.org/10.1016/j.mspro.2014.06.256
Fayyad, T. M., & Lees, J. M. (2017). Experimental investigation of crack propagation and crack branching in lightly reinforced concrete beams using digital image correlation. Engineering Fracture Mechanics, 182, 487-505. doi:https://doi.org/10.1016/j.engfracmech.2017.04.051
Gao, Z., Zhang, Q., Su, Y., & Wu, S. (2017). Accuracy evaluation of optical distortion calibration by digital image correlation. Optics and Lasers in Engineering, 98, 143-152. doi:https://doi.org/10.1016/j.optlaseng.2017.06.008
Gauvin, C., Jullien, D., Doumalin, P., Dupré, J. C., & Gril, J. (2014). Image correlation to evaluate the influence of hygrothermal loading on wood. Strain, 50(5), 428-435. doi:https://doi.org/10.1111/str.12090
Gehri, N., Mata-Falcón, J., & Kaufmann, W. (2020). Automated crack detection and measurement based on digital image correlation. Construction and Building Materials, 256, 119383. doi:https://doi.org/10.1016/j.conbuildmat.2020.119383
Gencturk, B., Hossain, K., Kapadia, A., Labib, E., & Mo, Y.-L. (2014). Use of digital image correlation technique in full-scale testing of prestressed concrete structures. Measurement, 47, 505-515. doi:https://doi.org/10.1016/j.measurement.2013.09.018
Górszczyk, J., Malicki, K., & Zych, T. (2019). Application of digital image correlation (DIC) method for road material testing. Materials, 12(15), 2349. doi:https://doi.org/10.3390/ma12152349
Granshaw, S. (1980). Bundle adjustment methods in engineering photogrammetry. The Photogrammetric Record, 10(56), 181-207. doi:https://doi.org/10.1111/j.1477-9730.1980.tb00020.x
Grediac, M. (2004). The use of full-field measurement methods in composite material characterization: interest and limitations. Composites Part A: applied science and manufacturing, 35(7-8), 751-761. doi:https://doi.org/10.1016/j.compositesa.2004.01.019
Hall, S. A., Bornert, M., Desrues, J., Pannier, Y., Lenoir, N., Viggiani, G., & Bésuelle, P. (2010). Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Geotechnique, 60(5), 315-322. doi:https://doi.org/10.1680/geot.2010.60.5.315
Hosseinzadeh, F., Yan, W., & Pierron, F. (2020). Recent advances in digital image correlation: A review with application to continuous wave and pulsed laser-based DIC. Optics and Lasers in Engineering, 124, 105894.
Hoult, N. A., Take, W. A., Lee, C., & Dutton, M. (2013). Experimental accuracy of two dimensional strain measurements using digital image correlation. Engineering Structures, 46, 718-726. doi:https://doi.org/10.1016/j.engstruct.2012.08.018
Hua, T., Xie, H., Wang, S., Hu, Z., Chen, P., & Zhang, Q. (2011). Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation. Optics & Laser Technology, 43(1), 9-13. doi:https://doi.org/10.1016/j.optlastec.2010.04.010
Huang, Z., Tu, Y., Meng, S., Sabau, C., Popescu, C., & Sas, G. (2019). Experimental study on shear deformation of reinforced concrete beams using digital image correlation. Engineering Structures, 181, 670-698. doi:https://doi.org/10.1016/j.engstruct.2018.12.056
Hung, P.-C., & Voloshin, A. (2003). In-plane strain measurement by digital image correlation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 25, 215-221. doi:https://doi.org/10.1590/S1678-58782003000300001
Kozicki, J., & Tejchman, J. (2007). Experimental investigations of strain localization in concrete using Digital Image Correlation (DIC) technique. Archives of Hydro-Engineering and Environmental Mechanics, 54(1), 3-24.
Lakavath, C., Joshi, S. S., & Prakash, S. S. (2019). Investigation of the effect of steel fibers on the shear crack-opening and crack-slip behavior of prestressed concrete beams using digital image correlation. Engineering Structures, 193, 28-42. doi:https://doi.org/10.1016/j.engstruct.2019.05.030
Lecompte, D., Smits, A., Bossuyt, S., Sol, H., Vantomme, J., Van Hemelrijck, D., & Habraken, A. (2006). Quality assessment of speckle patterns for digital image correlation. Optics and Lasers in Engineering, 44(11), 1132-1145. doi:https://doi.org/10.1016/j.optlaseng.2005.10.004
Lehoucq, R. B., Reu, P. L., & Turner, D. Z. (2015). A novel class of strain measures for digital image correlation. Strain, 51(4), 265-275. doi:https://doi.org/10.1111/str.12138
Li, D., Huang, P., Chen, Z., Yao, G., Guo, X., Zheng, X., & Yang, Y. (2020). Experimental study on fracture and fatigue crack propagation processes in concrete based on DIC technology. Engineering Fracture Mechanics, 235, 107166. doi:https://doi.org/10.1016/j.engfracmech.2020.107166
Lionello, G., & Cristofolini, L. (2014). A practical approach to optimizing the preparation of speckle patterns for digital-image correlation. Measurement science and technology, 25(10), 107001. doi:https://doi.org/10.1088/0957-0233/25/10/107001
Liu, X.-Y., Li, R.-L., Zhao, H.-W., Cheng, T.-H., Cui, G.-J., Tan, Q.-C., & Meng, G.-W. (2015). Quality assessment of speckle patterns for digital image correlation by Shannon entropy. Optik, 126(23), 4206-4211. doi:https://doi.org/10.1016/j.ijleo.2015.08.034
Liu, Y., Dong, B., Bai, Y., Xu, J., Zhang, Y., Ye, S., & Zhou, Y. (2015). Perspective Measurement of the Out‐of‐plane Displacement and Normal Strain Field Distributions Inside Glass Fibre‐reinforced Resin Matrix Composite. Strain, 51(3), 198-205. doi:https://doi.org/10.1111/str.12133
Lugli, P. (2009). Spray-coating deposition for large area organic thin-film devices. Paper presented at the Technical proceedings of the 2009 NSTI Nanotechnology Conference and Expo: Nanotech Conference & Expo 2009; Volume 2.
Mazzoleni, P., Zappa, E., Matta, F., & Sutton, M. A. (2015). Thermo-mechanical toner transfer for high-quality digital image correlation speckle patterns. Optics and Lasers in Engineering, 75, 72-80. doi:https://doi.org/10.1016/j.optlaseng.2015.06.009
McCormick, N., & Lord, J. (2010). Digital image correlation. Materials today, 13(12), 52-54. doi:https://doi.org/10.1016/S1369-7021(10)70235-2
McCormick, N., & Lord, J. (2012). Digital image correlation for structural measurements. Paper presented at the Proceedings of the Institution of Civil Engineers-Civil Engineering.
Mohan, A., & Poobal, S. (2018). Crack detection using image processing: A critical review and analysis. Alexandria Engineering Journal, 57(2), 787-798.
Neggers, J., Blaysat, B., Hoefnagels, J. P., & Geers, M. G. (2016). On image gradients in digital image correlation. International Journal for Numerical Methods in Engineering, 105(4), 243-260. doi:https://doi.org/10.1002/nme.4971
Ottman, N., Ruokolainen, L., Suomalainen, A., Sinkko, H., Karisola, P., Lehtimäki, J., . . . Fyhrquist, N. (2019). Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. Journal of allergy and clinical immunology, 143(3), 1198-1206. e1112. doi:https://doi.org/10.1016/j.jaci.2018.06.024
Pan, B. (2011). Recent progress in digital image correlation. Experimental Mechanics, 51(7), 1223-1235. doi:https://doi.org//10.1007/s11340-010-9418-3
Pan, B. (2014). An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss–Newton algorithm. Strain, 50(1), 48-56. doi:https://doi.org/10.1111/str.12066
Pan, B., & Li, K. (2011). A fast digital image correlation method for deformation measurement. Optics and Lasers in Engineering, 49(7), 841-847. doi:https://doi.org/10.1016/j.optlaseng.2011.02.023
Pan, B., Li, K., & Tong, W. (2013). Fast, robust and accurate digital image correlation calculation without redundant computations. Experimental Mechanics, 53(7), 1277-1289. doi:https://doi.org/10.1007/s11340-013-9717-6
Pan, B., Lu, Z., & Xie, H. (2010). Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Optics and Lasers in Engineering, 48(4), 469-477. doi:https://doi.org/10.1016/j.optlaseng.2009.08.010
Pan, B., Qian, K., Xie, H., & Asundi, A. (2009). Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement science and technology, 20(6), 062001. doi:https://doi.org/10.1088/0957-0233/20/6/062001
Pan, B., Tian, L., & Song, X. (2016). Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation. Ndt & E International, 79, 73-80. doi:https://doi.org/10.1016/j.ndteint.2015.12.006
Pan, B., & Wang, B. (2016). Digital image correlation with enhanced accuracy and efficiency: a comparison of two subpixel registration algorithms. Experimental Mechanics, 56(8), 1395-1409. doi:hhtp://doi.org/10.1007/s11340-016-0180-z
Pan, B., Xie, H., & Wang, Z. (2010). Equivalence of digital image correlation criteria for pattern matching. Applied optics, 49(28), 5501-5509. doi:https://doi.org/10.1364/ao.49.005501
10.1364/ao.49.005501
Pan, B., Xie, H., Wang, Z., Qian, K., & Wang, Z. (2008). Study on subset size selection in digital image correlation for speckle patterns. Optics express, 16(10), 7037-7048. doi:https://doi.org/10.1364/OE.16.007037
Pérez, V. Q., Prieto, D. C., & Orduz, L. E. Z. (2021). Mechanical characterization of self-compacting steel fiber reinforced concrete using digital image correlation. Engineering Fracture Mechanics, 246, 107618. doi:https://doi.org/10.1016/j.engfracmech.2021.107618
Peters, W., & Ranson, W. (1982). Digital imaging techniques in experimental stress analysis. Optical engineering, 21(3), 213427. doi:https://doi.org/10.1117/12.7972925
Peters, W., Ranson, W., Sutton, M., Chu, T., & Anderson, J. (1983). Application of digital correlation methods to rigid body mechanics. Optical engineering, 22(6), 226738. doi:https://doi.org/10.1117/12.7973231
PI, L. Y., Smith, L., Gothekar, M. A., & Chen, M. X. (2010). Measure Strain Distribution Using Digital Image Correlation (DIC) for Tensile Tests.
Quanjin, M., Rejab, M., Halim, Q., Merzuki, M., & Darus, M. (2020). Experimental investigation of the tensile test using digital image correlation (DIC) method. Materials Today: Proceedings, 27, 757-763. doi:https://doi.org/10.1016/j.matpr.2019.12.072
Ramos, T., Braga, D. F., Eslami, S., Tavares, P. J., & Moreira, P. (2015). Comparison between finite element method simulation, digital image correlation and strain gauges measurements in a 3-point bending flexural test. Procedia Engineering, 114, 232-239. doi:https://doi.org/10.1016/j.proeng.2015.08.063
Ranson, W., Sutton, M., & Peters, W. (1987). Holographic and laser speckle interferometry. Handbook of Experimental Mechanics, 388-429.
Rayan, M. K. (2008). Spray deposition of biomolecular thin films.
Reu, P. (2014a). All about speckles: aliasing. Experimental techniques, 38(5), 1-3. doi:https://doi.org/10.1111/ext.12111
Reu, P. (2014b). All about speckles: speckle size measurement. Experimental techniques, 38(6), 1-2. doi:https://doi.org/10.1111/ext.12110
Reu, P. (2015a). All about speckles: contrast. Experimental techniques, 39(1), 1-2. doi:https://doi.org/10.1111/ext.12126
Reu, P. (2015b). All about speckles: edge sharpness. Experimental techniques, 39(2), 1-2. doi:https://doi.org/10.1111/ext.12139
Reu, P. L., Toussaint, E., Jones, E., Bruck, H. A., Iadicola, M., Balcaen, R., . . . Simonsen, M. (2018). DIC challenge: developing images and guidelines for evaluating accuracy and resolution of 2D analyses. Experimental Mechanics, 58(7), 1067-1099. doi:https://doi.org/10.1007/s11340-017-0349-0
Sebastian, C., & Patterson, E. (2015). Calibration of a digital image correlation system. Experimental techniques, 39(1), 21-29. doi:https://doi.org/10.1111/ext.12005
Seo, B. H., Kim, J. H., Park, J. B., & Jung, G. D. (2015). Crack propagation characteristics of particulate reinforced composites using digital image correlation: Charakterisierung der Rissausbreitung von partikelverstärkten Verbundwerkstoffen mittels digitaler Bildkorrelation. Materialwissenschaft und Werkstofftechnik, 46(4-5), 387-393. doi:https://doi.org/10.1002/mawe.201500413
Shah, S., & Kishen, J. C. (2011). Fracture properties of concrete–concrete interfaces using digital image correlation. Experimental Mechanics, 51(3), 303-313. doi:https://doi.org/10.1007/s11340-010-9358-y
Shukla, N., & Mishra, M. K. (2018). Digital Image Correlation Techniques for Experimental Strain Analysis: A Review.
Skarżyński, Ł., Kozicki, J., & Tejchman, J. (2013). Application of DIC technique to concrete—study on objectivity of measured surface displacements. Experimental Mechanics, 53(9), 1545-1559. doi:https://doi.org/10.1007/s11340-013-9781-y
Skarżyński, Ł., Syroka, E., & Tejchman, J. (2011). Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams. Strain, 47, e319-e332. doi:https://doi.org/10.1111/j.1475-1305.2008.00605.x
Stoilov, G., Kavardzhikov, V., & Pashkouleva, D. (2012). A comparative study of random patterns for digital image correlation. Journal of Theoretical and Applied Mechanics, 42(2), 55. doi:https://doi.org/10.2478/v10254-012-0008-x
Su, M.-N., Young, B., & Gardner, L. (2016). The continuous strength method for the design of aluminium alloy structural elements. Engineering Structures, 122, 338-348. doi:https://doi.org/10.1016/j.engstruct.2016.04.040
Su, Y., Gao, Z., Zhang, Q., & Wu, S. (2018). Spatial uncertainty of measurement errors in digital image correlation. Optics and Lasers in Engineering, 110, 113-121. doi:https://doi.org/10.1016/j.optlaseng.2018.05.016
Su, Y., Zhang, Q., Fang, Z., Wang, Y., Liu, Y., & Wu, S. (2019). Elimination of systematic error in digital image correlation caused by intensity interpolation by introducing position randomness to subset points. Optics and Lasers in Engineering, 114, 60-75. doi:https://doi.org/10.1016/j.optlaseng.2018.10.012
Sutton, M., Mingqi, C., Peters, W., Chao, Y., & McNeill, S. (1986). Application of an optimized digital correlation method to planar deformation analysis. Image and Vision Computing, 4(3), 143-150. doi:https://doi.org/10.1016/0262-8856(86)90057-0
Sutton, M. A., Orteu, J. J., & Schreier, H. (2009). Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications: Springer Science & Business Media.
Syed, Y., Saliba, J., & Loukili, A. (2013). Study of evolution of fracture process zone in concrete by simultaneous application of digital image correlation and acoustic emission. Paper presented at the VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8.
Tejchman, J. (2010). Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending. European Journal of Mechanics-A/Solids, 29(4), 746-760. doi:https://doi.org/10.1016/j.euromechsol.2010.02.008
Tekieli, M., De Santis, S., de Felice, G., Kwiecień, A., & Roscini, F. (2017). Application of Digital Image Correlation to composite reinforcements testing. Composite Structures, 160, 670-688. doi:https://doi.org/10.1016/j.compstruct.2016.10.096
Valença, J., Dias-da-Costa, D., & Júlio, E. (2012). Characterisation of concrete cracking during laboratorial tests using image processing. Construction and Building Materials, 28(1), 607-615. doi:https://doi.org/10.1016/j.conbuildmat.2011.08.082
Valença, J., Júlio, E., & Araújo, H. (2012). Applications of photogrammetry to structural assessment. Experimental techniques, 36(5), 71-81. doi:https://doi.org/10.1111/j.1747-1567.2011.00731.x
Van Den Heuvel, F., Kroon, R., & Le Poole, R. (1993). Digital close-range photogrammetry using artificial targets. International Archives of Photogrammetry and Remote Sensing, 29, 222-222.
Verbruggen, S., Aggelis, D. G., Tysmans, T., & Wastiels, J. (2014). Bending of beams externally reinforced with TRC and CFRP monitored by DIC and AE. Composite Structures, 112, 113-121. doi:https://doi.org/10.1016/j.compstruct.2014.02.006
Wang, J. J., Gowripalan, N., Li, J., & Nguyen, V. V. (2019). Close-range photogrammetry for accurate deformation distribution measurement Mechanics of Structures and Materials XXIV (pp. 822-829): CRC Press.
Wang, Y., Sutton, M., Bruck, H., & Schreier, H. (2009). Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements. Strain, 45(2), 160-178. doi:https://doi.org/10.1111/j.1475-1305.2008.00592.x
Wattrisse, B., Chrysochoos, A., Muracciole, J.-M., & Némoz-Gaillard, M. (2001). Analysis of strain localization during tensile tests by digital image correlation. Experimental Mechanics, 41(1), 29-39. doi:https://doi.org/10.1007/BF02323101
White, D., Take, W., & Bolton, M. (2003). Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 53(7), 619-631. doi:https://doi.org/10.1680/geot.2003.53.7.619
Williams, H. E. (2001). On introducing engineering strain. International Journal of Mechanical Engineering Education, 29(4), 397-403. doi:https://doi.org/10.7227/IJMEE.29.4.9
Xie, Z., Zhou, H., Lu, L., & Chen, Z. (2017). An investigation into fracture behavior of geopolymer concrete with digital image correlation technique. Construction and Building Materials, 155, 371-380. doi:https://doi.org/10.1016/j.conbuildmat.2017.08.041
Yaofeng, S., & Pang, J. H. (2007). Study of optimal subset size in digital image correlation of speckle pattern images. Optics and Lasers in Engineering, 45(9), 967-974. doi:https://doi.org/10.1016/j.optlaseng.2007.01.012
Zhao, J., Sang, Y., & Duan, F. (2019). The state of the art of two‐dimensional digital image correlation computational method. Engineering reports, 1(2), e12038. doi: https://doi.org/10.1002/eng2.12038
Zhao, P., Zsaki, A. M., & Nokken, M. R. (2018). Using digital image correlation to evaluate plastic shrinkage cracking in cement-based materials. Construction and Building Materials, 182, 108-117. doi:https://doi.org/10.1016/j.conbuildmat.2018.05.239
Zhou, P., & Goodson, K. E. (2001). Subpixel displacement and deformation gradient measurement using digital image/speckle correlation. Optical engineering, 40(8), 1613-1620. doi:https://doi.org/10.1117/1.1387992
Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., . . . Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production, 125, 253-267. doi:https://doi.org/10.1016/j.jclepro.2016.03.019
Published
2023-10-01
How to Cite
ZAYA, M. A., ADAM , S. M., & ABDULRAHMAN, F. H. (2023). APPLICATION OF DIGITAL IMAGE CORRELATION METHOD IN MATERIALS - TESTING AND MEASUREMENTS: A REVIEW. Journal of Duhok University, 26(2), 145-167. https://doi.org/10.26682/sjuod.2023.26.2.13
Section
Pure and Engineering Sciences