NEUROSTEROID, NATURAL AND ANABOLIC STEROIDS: PHYSIOLOGICAL, IMMUNOLOGICAL AND HISTOPATHOLOGICAL STUDY ON HYPERLIPIDAEMIC ALBINO RATS

  • QAIS L. KHIDER Dept. of Biology, College of Science, University of Duhok, Kurdistan Region-Iraq
  • AMAD M. S. SOFI Dept. of Biology, College of Science, University of Duhok, Kurdistan Region-Iraq
  • MALIKA K. N. AL-BARWARY Dept. of Biology, College of Science, University of Duhok, Kurdistan Region-Iraq
Keywords: Dehydroepiandrosterone, Hydrocortisone, Sustanon and Hyperlipidemia

Abstract

Neurosteroids are steroids that include endogenous steroids that the nervous system produces, and they function as neurotransmitters or neuromodulators. steroid hormones are chiefly produced in the adrenal glands and have a pivotal role in the regulation of many physiological actions in the body. An anabolic steroid, which is an artificial compound, has similar effects to testosterone. This study aimed at distinguishing between the roles of neurosteroid, natural steroid, and anabolic synthetic steroids by investigating the effects of some physiological, immunological, and histopathological on various target organs such as the Kidney, liver and spleen in hyperlipidemic rats. In order to achieve these aims, we randomly divided 50 male albino rats into five equal groups. The first group, which was fed on standard diet and injected subcutaneously with 0.5 ml of normal saline, was used as the control group, while the second group, which served as the hyperlipidemic control group was fed a high fat diet. The third group, hyperlipidemic rats, were orally administrated with DHEA (as a neurosteroid, 17.2mg/kg/day), the fourth group, hyperlipidemic rats, were subcutaneously injected with hydrocortisone (as a natural steroid, 26.1mg/kg/day). Finally, the fifth group of hyperlipidemic rats were intramuscularly injected with Sustanon (as an anabolic steroid, 66.9 mg/kg/week). The study has found that hyperlipidemic rats showed hematological parameters and interleukin IL-2 improvements with DHEA, fasting blood sugar and body weight with Sustanon and a lipid profile with both hydrocortisone and Sustanon, Renal function was almost deteriorated in all treated groups, and finally there were various alterations in the histopathological examination of kidney, liver and spleen. Finally, the study has come up with the following conclusions: DHEA administration can improve immunity and ameliorate tissue damage in the spleen. Hydrocortisone may improve the lipid profile, though it has negative effects on immunity and tissue health. Sustanon has positive effects on blood glucose and lipid profile; however, its effects on immunity are not clear enough

Downloads

Download data is not yet available.

References

Abd Hamza, E., & Rashid, K. H. (2017). Some hepatic and renal histological and physiological effects of the artificial testosterone (Sustanon) on female rats. Pakistan Journal of Biotechnology, 14(3), 369-372.
Al-alwany, E. A. H.; Hassan, A. J., & AL-Saadi, H. K. (2016). Effect of Sustanon on the Histology of some Organs in Rats.
Al-Maliki, S.; Al-Ali, A., & Kathim, A. (2018). Effect of corticosteroids cortisol hormone [hydrocortisone] on the of the blood parameter in pregnant and non-pregnant laboratory females mice. J Histol Cell Biol. 2018; 1 (1): 16-22. J Histol Cell Biol 2018 Volume 1 Issue, 2.
Al-Muswie, R. T. (2017). Effect of long term Administration of hydrocortisone on some organs in females rats. University of Thi-Qar Journal, 12(4), 1-11.
Alan, I. S., & Alan, B. (2018). Side effects of glucocorticoids. Pharmacokinetics and adverse effects of drugs-mechanisms and risks Factors, 93-115.
Albano, G. D.; Amico, F.; Cocimano, G.; Liberto, A.; Maglietta, F.; Esposito, M.; Rosi, G. L.; Di Nunno, N.; Salerno, M., & Montana, A. (2021). Adverse effects of anabolic-androgenic steroids: A literature review. Healthcare,
Amar, M.; Shama, I. A.; Enaia, A.; Hind, A., & Hager, A. (2013). Effects of various levels of oral doses dexamethasone (Al-nagma) abused as cosmetic by Sudanese women on Wistar rats. Journal of Medical Sciences, 13(6), 432.
Aoki, K., & Terauchi, Y. (2018). Effect of dehydroepiandrosterone (DHEA) on diabetes mellitus and obesity. Vitamins and hormones, 108, 355-365.
Arazi, H.; Rahmati, S., & Ghafoori, H. (2017). The interaction effects of resistance training and sustanon abuse on liver antioxidant activities and serum enzymes in male rats. Interventional Medicine and Applied Science, 9(3), 178-183.
Arisha, S. M.; Saif, M. E., & Kandil, E. H. (2022). Histological, ultrastructural and immunohistochemical studies on the ameliorative role of Cinnamon zeylanicum against high cholesterol diet-induced hypercholesterolemia in the kidney of adult male albino rats. Heliyon, 8(8).
Asghar, A.; Akhtar, T.; Batool, T.; Khawar, M. B.; Nadeem, S.; Mehmood, R., & Sheikh, N. (2021). High-fat diet-induced splenic, hepatic, and skeletal muscle architecture damage: cellular and molecular players. Molecular and Cellular Biochemistry, 476(10), 3671-3679.
Cao, W.; Zheng, R.-D.; Xu, S.-H.; Fan, Y.-F.; Sun, H.-P., & Liu, C. (2017). Association between sex hormone and blood uric acid in male patients with type 2 diabetes. International journal of endocrinology, 2017.
Chourpiliadis, C., & Aeddula, N. R. (2022). Physiology, Glucocorticoids. In StatPearls [Internet]. StatPearls Publishing.
Csonka, C.; Baranyai, T.; Tiszlavicz, L.; Fébel, H.; Szűcs, G.; Varga, Z. V.; Sárközy, M.; Puskás, L. G.; Antal, O., & Siska, A. (2017). Isolated hypercholesterolemia leads to steatosis in the liver without affecting the pancreas. Lipids in Health and Disease, 16(1), 1-14.
Emmelot-Vonk, M. H.; Verhaar, H. J.; Pour, H. R. N.; Aleman, A.; Lock, T. M.; Bosch, J. R.; Grobbee, D. E., & van der Schouw, Y. T. (2008). Effect of testosterone supplementation on functional mobility, cognition, and other parameters in older men: a randomized controlled trial. Jama, 299(1), 39-52.
Evans, N. A. (2004). Current concepts in anabolic-androgenic steroids. The American journal of sports medicine, 32(2), 534-542.
Feng, L.; Huang, F.; Ma, Y., & Tang, J. (2021). The effect of high-fat diet and exercise intervention on the TNF-α level in rat spleen. Frontiers in Immunology, 12, 671167.
Fernandez, C. J.; Chacko, E. C., & Pappachan, J. M. (2019). Male obesity-related secondary hypogonadism–pathophysiology, clinical implications and management. European Endocrinology, 15(2), 83.
Forghani, N.; Karimi, Z.; Mokhtari, M.; Shariati, M., & Masjedi, F. (2023). Association of Oxidative Stress with Kidney Injury in a Hyperandrogenemic Female Rat Model. Iranian Journal of Medical Sciences.
Gabai, G.; Mongillo, P.; Giaretta, E., & Marinelli, L. (2020). Do dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) play a role in the stress response in domestic animals? Frontiers in Veterinary Science, 7, 588835.
Gianatti, E. J.; Dupuis, P.; Hoermann, R.; Strauss, B. J.; Wentworth, J. M.; Zajac, J. D., & Grossmann, M. (2014). Effect of testosterone treatment on glucose metabolism in men with type 2 diabetes: a randomized controlled trial. Diabetes care, 37(8), 2098-2107.
Guillén, J. (2017). Laboratory animals: regulations and recommendations for the care and use of animals in research. Academic Press.
Hammadi Jasim, N.; D Kareem, A.; Ali, M. A., & Abbas, B. (2022). Effect of Long-Term Treatment with Dexamethasone on the Liver and Kidney Histopathology, as well as Blood Biochemistry in Male Rabbits (Lepus Cuniculus). Archives of Razi Institute, 77(1), 333-343.
Harsløf, M.; Pedersen, K. M.; Nordestgaard, B. G., & Afzal, S. (2021). Low high-density lipoprotein cholesterol and high white blood cell counts: a mendelian randomization study. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(2), 976-987.
Henley, D. V.; Lindzey, J., & Korach, K. S. (2005). Steroid hormones. Endocrinology: basic and clinical principles, 49-65.
Holst, J. P.; Soldin, O. P.; Guo, T., & Soldin, S. J. (2004). Steroid hormones: relevance and measurement in the clinical laboratory. Clinics in laboratory medicine, 24(1), 105-118.
Husni Abdulla, M.; Amad, M. S. J., & Malika Kassim, N. (2021). Effects of Onopordum acanthium L., seeds extracts on serum tumor necrosis factor-alpha and angiotensin-converting enzyme in hyperlipidemic and diabetic rats. International Journal of Research in Pharmaceutical Sciences, 12(4), 2441-2453. https://ijrps.com/home/article/view/438
Isaac, M. R. (2019). Effects of Anabolic Steroids on the Histological Structure of Renal Cortex of Adult Male Albino Rats and the Possible Protective Role of Taurine. Egyptian Journal of Histology, 42(2), 346-357.
Iswari, R. S.; Dafip, M., & Rifa'i, M. (2020). Biochemical and histopathology analysis of liver damage in hypercholesterolemic rats induced by tomato extract. Biosaintifika: Journal of Biology & Biology Education, 12(3), 438-445.
Jahn, M. P.; Gomes, L. F.; Jacob, M. H. V. M.; da Rocha Janner, D.; da Rosa Araújo, A. S.; Belló-Klein, A.; Ribeiro, M. F. M., & Kucharski, L. C. (2011). The effect of dehydroepiandrosterone (DHEA) on renal function and metabolism in diabetic rats. Steroids, 76(6), 564-570.
Jahn, M. P.; Jacob, M. H. V. M.; Gomes, L. F.; Duarte, R.; da Rosa Araújo, A. S.; Belló-Klein, A.; Ribeiro, M. F. M., & Kucharski, L. C. (2010). The effect of long-term DHEA treatment on glucose metabolism, hydrogen peroxide and thioredoxin levels in the skeletal muscle of diabetic rats. The Journal of Steroid Biochemistry and Molecular Biology, 120(1), 38-44.
Jiménez, M. C.; Tucker, K. L.; Rodriguez, F.; Porneala, B. C.; Meigs, J. B., & López, L. (2019). Cardiovascular risk factors and dehydroepiandrosterone sulfate among Latinos in the Boston Puerto Rican Health Study. Journal of the Endocrine Society, 3(1), 291-303.
Khera, S.; Ranjan, R.; Ramachandran, S., & Beriwal, A. (2021). High-dose methotrexate-induced reversible grade 4 hyperbilirubinaemia and transaminitis in an adolescent with Burkitt Leukaemia. BMJ Case Reports CP, 14(1), e237512.
Koubaa‐Ghorbel, F.; Chaâbane, M.; Turki, M.; Makni‐Ayadi, F., & El Feki, A. (2020). The protective effects of Salvia officinalis essential oil compared to simvastatin against hyperlipidemia, liver, and kidney injuries in mice submitted to a high‐fat diet. Journal of food biochemistry, 44(4), e13160.
Kraut, J. A., & Madias, N. E. (2017). Adverse effects of the metabolic acidosis of chronic kidney disease. Advances in chronic kidney disease, 24(5), 289-297.
Labrie, F. (2010). DHEA, important source of sex steroids in men and even more in women. Progress in brain research, 182, 97-148.
Lai, Y. C.; Woollard, K. J.; McClelland, R. L.; Allison, M. A.; Rye, K.-A.; Ong, K. L., & Cochran, B. J. (2019). The association of plasma lipids with white blood cell counts: Results from the Multi-Ethnic Study of Atherosclerosis. Journal of Clinical Lipidology, 13(5), 812-820.
Luo, S.; Labrie, C.; Bélanger, A., & Labrie, F. (1997). Effect of dehydroepiandrosterone on bone mass, serum lipids, and dimethylbenz (a) anthracene-induced mammary carcinoma in the rat. Endocrinology, 138(8), 3387-3394.
Mahmoud, Y. I.; Mahmoud, A. A.; Abo-Zeid, F. S., & Fares, N. H. (2018). Effect of dehydroepiandrosterone on the liver of perimenopausal rat: multiple doses study: DHEA alters the liver of perimenopausal rats. Ultrastructural Pathology, 42(4), 333-343.
Mangos, G. J.; Whitworth, J. A.; Williamson, P. M., & Kelly, J. J. (2003). Glucocorticoids and the kidney. Nephrology, 8(6), 267-273.
Misiak, B.; Frydecka, D.; Loska, O.; Moustafa, A. A.; Samochowiec, J.; Kasznia, J., & Stańczykiewicz, B. (2018). Testosterone, DHEA and DHEA-S in patients with schizophrenia: A systematic review and meta-analysis. Psychoneuroendocrinology, 89, 92-102.
Naser, I. H.; Alkareem, Z. A., & Mosa, A. U. (2021). Hyperlipidemia: pathophysiology, causes, complications, and treatment. A review. Karbala Journal of Pharmaceutical Sciences, 1(19).
Noel, K. I. (2013). Hepatic Tissues under the Effect of Dexamethasone: Histological Study, Dose and Duration Related Changes. Iraqi J Med Sci, 11, 113-118.
Nucci, R. A. B.; Teodoro, A. C. d. S.; Krause Neto, W.; Silva, W. d. A.; de Souza, R. R.; Anaruma, C. A., & Gama, E. F. (2017). Effects of testosterone administration on liver structure and function in aging rats. The Aging Male, 20(2), 134-137.
Pellizzon, M. A., & Ricci, M. R. (2020). Choice of laboratory rodent diet may confound data interpretation and reproducibility. Current developments in nutrition, 4(4), nzaa031.
Pham, J.; Porter, J.; Svec, D.; Eiswirth, C., & Svec, F. (2000). The effect of dehydroepiandrosterone on Zucker rats selected for fat food preference. Physiology & behavior, 70(5), 431-441.
Qin, Y.; Santos, H. O.; Khani, V.; Tan, S. C., & Zhi, Y. (2020). Effects of dehydroepiandrosterone (DHEA) supplementation on the lipid profile: A systematic review and dose-response meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 30(9), 1465-1475.
Quinn, T. A.; Robinson, S. R., & Walker, D. (2018). Dehydroepiandrosterone (DHEA) and DHEA sulfate: Roles in brain function and disease. Sex hormones in neurodegeneration processes and diseases, 41-68.
Ramamoorthy, S., & Cidlowski, J. A. (2016). Corticosteroids: mechanisms of action in health and disease. Rheumatic Disease Clinics, 42(1), 15-31.
Rearte, B.; Maglioco, A.; Machuca, D.; Greco, D. M.; Landoni, V. I.; Rodriguez-Rodrigues, N.; Meiss, R.; Fernández, G. C., & Isturiz, M. A. (2014). Dehydroepiandrosterone and metyrapone partially restore the adaptive humoral and cellular immune response in endotoxin immunosuppressed mice. Innate Immunity, 20(6), 585-597.
Sadowska-Krępa, E.; Kłapcińska, B.; Nowara, A.; Jagsz, S.; Szołtysek-Bołdys, I.; Chalimoniuk, M.; Langfort, J., & Chrapusta, S. J. (2020). High-dose testosterone supplementation disturbs liver pro-oxidant/antioxidant balance and function in adolescent male Wistar rats undergoing moderate-intensity endurance training. PeerJ, 8, e10228.
Safwat, S. M.; Hussein, A. M.; Eid, E. A.; Serria, M. S.; Elesawy, B. H., & Sakr, H. F. (2022). Dehydroepiandrosterone (DHEA) Improves the Metabolic and Haemostatic Disturbances in Rats with Male Hypogonadism. Scientia Pharmaceutica, 90(1), 6.
Salim, H. M.; Kurnia, L. F., & Bintarti, T. W. (2018). The effects of high-fat diet on histological changes of kidneys in rats. Biomolecular and Health Science Journal, 1(2), 109-112.
Samuel, S.; Nguyen, T., & Choi, H. A. (2017). Pharmacologic characteristics of corticosteroids. Journal of Neurocritical care, 10(2), 53-59.
Shpilberg, Y.; Beaudry, J. L.; D’Souza, A.; Campbell, J. E.; Peckett, A., & Riddell, M. C. (2012). A rodent model of rapid-onset diabetes induced by glucocorticoids and high-fat feeding. Disease models & mechanisms, 5(5), 671-680.
Sinclair, M.; Grossmann, M.; Gow, P. J., & Angus, P. W. (2015). Testosterone in men with advanced liver disease: abnormalities and implications. Journal of gastroenterology and hepatology, 30(2), 244-251.
Stahn, C., & Buttgereit, F. (2008). Genomic and nongenomic effects of glucocorticoids. Nature clinical practice Rheumatology, 4(10), 525-533.
Tamez-Pérez, H. E.; Quintanilla-Flores, D. L.; Rodríguez-Gutiérrez, R.; González-González, J. G., & Tamez-Peña, A. L. (2015). Steroid hyperglycemia: prevalence, early detection and therapeutic recommendations: a narrative review. World journal of diabetes, 6(8), 1073.
Timmermans, S.; Souffriau, J., & Libert, C. (2019). A general introduction to glucocorticoid biology. Frontiers in Immunology, 10, 1545.
Traish, A. M. (2014). Testosterone and weight loss: the evidence. Current opinion in endocrinology, diabetes, and obesity, 21(5), 313.
Verma, N. (2016). Introduction to hyperlipidemia and its treatment: A review. Int J Curr Pharm Res, 9(1), 6-14.
Vitošević, K.; Todorović, M.; Varljen, T.; Slović, Ž.; Matić, S., & Todorović, D. (2018). Effect of formalin fixation on pcr amplification of DNA isolated from healthy autopsy tissues. Acta Histochemica, 120(8), 780-788.
Wan, H.; Zhang, K.; Wang, Y.; Chen, Y.; Zhang, W.; Xia, F.; Zhang, Y.; Wang, N., & Lu, Y. (2020). The associations between gonadal hormones and serum uric acid levels in men and postmenopausal women with diabetes. Frontiers in Endocrinology, 11, 55.
Wang, Y.; Liu, M.-j.; Yang, H.-m.; Ma, C.-y.; Jia, P.-y.; Jia, D.-l., & Hou, A.-j. (2018). Association between increased serum alkaline phosphatase and the coronary slow flow phenomenon. BMC cardiovascular disorders, 18(1), 1-6.
Whitham, J. C.; Bryant, J. L., & Miller, L. J. (2020). Beyond glucocorticoids: Integrating dehydroepiandrosterone (DHEA) into animal welfare research. Animals, 10(8), 1381.
Woodhouse, L. J.; Gupta, N.; Bhasin, M.; Singh, A. B.; Ross, R.; Phillips, J., & Bhasin, S. (2004). Dose-dependent effects of testosterone on regional adipose tissue distribution in healthy young men. The Journal of Clinical Endocrinology & Metabolism, 89(2), 718-726.
Yao, Y.-F.; Chen, Z.-Y.; Luo, T.-Y.; Dou, X.-Y., & Chen, H.-B. (2022). Cholesterol affects the relationship between albumin and major adverse cardiac events in patients with coronary artery disease: a secondary analysis. Scientific Reports, 12(1), 12634.
Yao, Y. S.; Li, T. D., & Zeng, Z. H. (2020). Mechanisms underlying direct actions of hyperlipidemia on myocardium: an updated review. Lipids in Health and Disease, 19(1), 1-6.
Yonis, S. D.; Al, A. A. A.-H. M., & Shouk, A. S. (2021). Histological Effect of Androgenic Anabolic Steroids on Liver. Indian Journal of Forensic Medicine & Toxicology, 15(1), 1480-1487.
Zhang, X.; Coker, O. O.; Chu, E. S.; Fu, K.; Lau, H. C.; Wang, Y.-X.; Chan, A. W.; Wei, H.; Yang, X., & Sung, J. J. (2021). Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut, 70(4), 761-774.
Ziogas, A.; Maekawa, T.; Wiessner, J. R.; Le, T. T.; Sprott, D.; Troullinaki, M.; Neuwirth, A.; Anastasopoulou, V.; Grossklaus, S., & Chung, K.-J. (2020). DHEA inhibits leukocyte recruitment through regulation of the integrin antagonist DEL-1. The Journal of Immunology, 204(5), 1214-1224
Published
2023-10-01
How to Cite
KHIDER, Q. L., SOFI , A. M. S., & AL-BARWARY, M. K. N. (2023). NEUROSTEROID, NATURAL AND ANABOLIC STEROIDS: PHYSIOLOGICAL, IMMUNOLOGICAL AND HISTOPATHOLOGICAL STUDY ON HYPERLIPIDAEMIC ALBINO RATS . Journal of Duhok University, 26(2), 178-198. https://doi.org/10.26682/sjuod.2023.26.2.15
Section
Pure and Engineering Sciences