ASSESSMENT SOME OF THE GEOTECHNICAL PROPERTIES OF MUNICIPAL SOLID WASTE AT SORAN WASTE DUMPING SITE, KURDISTAN REGION OF IRAQ

  • TAWREZ SHAABAN Sofi Dept. of Civil Engineering, Faculty of Engineering, Soran University, Soran, Kurdistan Region- Iraq
  • JAMAL ISMAEL KAKRASUL Dept. of Civil Engineering, Faculty of Engineering, Soran University, Soran, Kurdistan Region- Iraq
  • SHERWAN SHARIF QURTAS Dept. of Civil Engineering, Faculty of Engineering, Soran University, Soran, Kurdistan Region- Iraq
Keywords: Dumping site; Geotechnical properties; Landfills; Municipal solid waste (MSW); Natural moisture content (NMC); Unconfined compressive strength (UCS), Waste disposal sites

Abstract

The majority of waste disposal (landfill) sites are made up of the municipal solid waste (MSW), that requires a proper management and engineering design of the landfill sites is must; otherwise they hurt the environment. The geotechnical properties of MSW are essential factors in the overall stability of landfills. The aim of this research is to assess the strength properties of MSW from a main dumping site in Soran city, Kurdistan region of Iraq. For this purpose, seven Shelby tube samples of MSW were collected at the different locations and depths of the dumpsite. Natural moisture content (NMC) and unconfined compressive strength (UCS) tests were performed on the collected samples. Results revealed that the MSW samples collected in the middle of the dumpsite had higher NMC and lower UCS than the samples collected at the edge sides of the dumpsite due to higher waste quantity in the middle of the dumpsite. Hence, the strength properties of MSW decreased with increasing waste quantity. In addition, the NMC and UCS of the MSW samples increased with increasing depth. Eventually, the unconfined compression results verified the stability of the landfill.

 

 

 

 

Downloads

Download data is not yet available.

References

Anikwe, M. A. N., & Nwobodo, K. C. A. (2002). Long term effect of municipal waste disposal on soil properties and productivity of sites used for urban agriculture in Abakaliki, Nigeria. Bioresource Technology, 83(3), 241–250. https://doi.org/10.1016/S0960-8524(01)00154-7
Bassam, R., Tuffaha, R., Haddad, M., & Engineer, E. (2006). Impacts of Solid Waste Leachate on Soil and its Simulation to Ground Water at Nablus Area. In An-Najah National University. An-Najah National University.
Budhu, M. (2011). Soil Mechanics and Foundations. In J. Welter (Ed.), JOHN WILEY & SONS, INC. (3rd Editio, Vol. 6, Issue August). Don Fowley. website: www.wiley.com/college/budhu
Datta, M. (2012). Geotechnology for Environmental Control at Waste Disposal Sites. Indian Geotechnical Journal, 42(1), 1–36. https://doi.org/10.1007/s40098-012-0002-x
Dixon, N., & Jones, D. R. V. (2003). Stability of Landfill Lining Systems : Report No . 2 Guidance. R&D Technical Report P1-385/TR2, 2.
Dixon, N., & Jones, D. R. V. (2005). Engineering properties of municipal solid waste. Geotextiles and Geomembranes, 23(3), 205–233. https://doi.org/10.1016/j.geotexmem.2004.11.002
Durmusoglu, E., Sanchez, I. M., & Corapcioglu, M. Y. (2006). Permeability and compression characteristics of municipal solid waste samples. Environmental Geology, 50(6), 773–786. https://doi.org/10.1007/s00254-006-0249-6
Fang, R., Guo, Z., & Feng, T. (2011). Analysis of stability and control in landfill sites expansion. Procedia Engineering, 24, 667–671. https://doi.org/10.1016/j.proeng.2011.11.2715
Fatahi, B., Khabbaz, H., & Fatahi, B. (2015). Improving Geotechnical Properties of Closed Landfills for Redevelopment Using Chemical Stabilization Techniques. In Ground Improvement Case Histories (Issue March). https://doi.org/10.1016/b978-0-08-100191-2.00008-3
Feng, S. J., Gao, K. W., Chen, Y. X., Li, Y., Zhang, L. M., & Chen, H. X. (2017). Geotechnical properties of municipal solid waste at Laogang Landfill, China. Waste Management, 63, 354–365. https://doi.org/10.1016/j.wasman.2016.09.016
Huang, Y., & Fan, G. (2016). Engineering geological analysis of municipal solid waste landfill stability. Natural Hazards, 84(1), 93–107. https://doi.org/10.1007/s11069-016-2408-8
Khodary, S. M., Negm, A. M., & Tawfik, A. (2018). Geotechnical properties of the soils contaminated with oils, landfill leachate, and fertilizers. Arabian Journal of Geosciences, 11(2). https://doi.org/10.1007/s12517-017-3372-7
Kumar, A., & Mittal, A. (2019). Utilization of municipal solid waste ash for stabilization of cohesive soil. In Lecture Notes in Civil Engineering (Vol. 31). Springer Singapore. https://doi.org/10.1007/978-981-13-7010-6_12
Machado, S. L., Karimpour-Fard, M., Shariatmadari, N., Carvalho, M. F., & Nascimento, J. C. F. d. (2010). Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Management, 30(12), 2579–2591. https://doi.org/10.1016/j.wasman.2010.07.019
Mohammed, K., Karim, S. H., & Mohammed, S. A. (2018). The Influence of Waste Disposal Site on The Water and Soil Quality in Halabja Province, Kurdistan, Iraq. Science Journal of University of Zakho, 6(1), 11. https://doi.org/10.25271/2018.6.1.404
Murthy, V. N. S. . (2003). Geotechnical Engineering- Principles and Practices of Soil Mechanics and Foundation Engineering. In Taylor & Francis (Vol. 6, Issue October). Taylor & Francis.
Reddy, K. R., Hettiarachchi, H., Gangathulasi, J., & Bogner, J. E. (2011). Geotechnical properties of municipal solid waste at different phases of biodegradation. Waste Management, 31(11), 2275–2286. https://doi.org/10.1016/j.wasman.2011.06.002
Reddy, K. R., Hettiarachchi, H., Giri, R. K., & Gangathulasi, J. (2015). Effects of Degradation on Geotechnical Properties of Municipal Solid Waste from Orchard Hills Landfill, USA. International Journal of Geosynthetics and Ground Engineering, 1(3), 1–14. https://doi.org/10.1007/s40891-015-0026-2
Reddy, K. R., Hettiarachchi, H., Parakalla, N., Gangathulasi, J., Bogner, J., & Lagier, T. (2009). Hydraulic Conductivity of MSW in Landfills. Journal of Environmental Engineering, 135(8), 677–683. https://doi.org/10.1061/(asce)ee.1943-7870.0000031
Sadhasivam, N., Sheik Mohideen, A. R., & Alankar, B. (2020). Optimisation of landfill sites for solid waste disposal in Thiruverumbur taluk of Tiruchirappalli district, India. Environmental Earth Sciences, 79(23), 1–20. https://doi.org/10.1007/s12665-020-09264-0
Sheng, H., Ren, Y., Huang, M., Zhang, Z., & Lan, J. (2021). Vertical Expansion Stability of an Existing Landfill: A Case Study of a Landfill in Xi’an, China. Advances in Civil Engineering, 2021. https://doi.org/10.1155/2021/5574238
Singh, U. K., Kumar, M., Chauhan, R., Jha, P. K., Ramanathan, A. L., & Subramanian, V. (2008). Assessment of the impact of landfill on groundwater quality: A case study of the Pirana site in western India. Environmental Monitoring and Assessment, 141(1–3), 309–321. https://doi.org/10.1007/s10661-007-9897-6
Vilar, O. M., & Carvalho, M. D. F. (2004). Mechanical properties of municipal solid waste. Journal of Testing and Evaluation, 32(6), 438–449. https://doi.org/10.1520/jte11945
Yılmaz, A., & Atmaca, E. (2006). Environmental geological assessment of a solid waste disposal site: A case study in Sivas, Turkey. Environmental Geology, 50(5), 677–689. https://doi.org/10.1007/s00254-006-0241-1
Published
2023-12-22
How to Cite
Sofi, T. S., KAKRASUL , J. I., & QURTAS , S. S. (2023). ASSESSMENT SOME OF THE GEOTECHNICAL PROPERTIES OF MUNICIPAL SOLID WASTE AT SORAN WASTE DUMPING SITE, KURDISTAN REGION OF IRAQ. Journal of Duhok University, 26(2), 244-253. https://doi.org/10.26682/csjuod.2023.26.2.23