• IMAD ABDULKAREEM DAWOD * Dept. of Biomedical Engineering, University of Duhok, Kurdistan Region -Iraq
  • THOMAS SCHANZE **IBMT, Dept. Life Science Engineering, THM- Germany
  • SALIH MUSTAFA S. ATROSHEY * Dept. of Biomedical Engineering, University of Duhok, Kurdistan Region -Iraq
Keywords: Electrodes number and interspacing, Forward and inverse problem, Heart models, Least squares estimation, and Moving dipole


In this review study we will shed some light on the equivalent source generators in electrocardiography and specially the moving dipole (MVD) and the characteristics of biomedical models used with this type of equivalent source generator. The mathematical derivation of the equations used in localizing this MVD is presented with the clarification of the reasons of inaccuracies due to; non-uniqueness, instability (ill-posedness) of the solution, and how a linear least square estimator method may improve the uniqueness of the solution. In addition, its experimental check in different inhomogeneity situations is also stated, the effect of blood mass on the moment and direction of the dipole throughout the ECG course is discussed too. The contribution and/or the progress of different groups of researchers in the clinical validation of MVD is concisely mentioned, furthermore some modern applications of the MVD are also presented.




Download data is not yet available.


Armoundas, A. A., Feldman, A. B., Mukkamala, R., & Cohen, R. J. (2003). A single equivalent moving dipole model: An efficient approach for localizing sites of origin of ventricular electrical activation. Annals of Biomedical Engineering, 31(5), 564–576.
Armoundas, A. A., Feldman, A. B., Mukkamala, R., He, B., Mullen, T. J., Belk, P. A., Lee, Y. Z., & Cohen, R. J. (2003). Statistical Accuracy of a Moving Equivalent Dipole Method to Identify Sites of Origin of Cardiac Electrical Activation. IEEE Transactions on Biomedical Engineering, 50(12), 1360–1370.
Armoundas, A. A., Feldman, A. B., Sherman, D. A., & Cohen, R. J. (2001). Applicability of the single equivalent point dipole model to represent a spatially distributed bio-electrical source. Medical and Biological Engineering and Computing, 39(5), 562–570.
Barnard, A. C. L., Duck, I. M., Lynn, M. S., & Timlake, W. P. (1967). The Application of Electromagnetic Theory to Electrocardiology: II. Numerical Solution of the Integral Equations. Biophysical Journal, 7(5), 463–491.
Barr, R. C., Spach, M. S., & Herman-giddens, G. S. (1971). Measuring Locations. IEEE Transactions on Biomedical Engineering, BME-18(2), 125–138.
Bort, R., Mascarell, L., Rodrigo, M., Climent, A. M., Liberos, A., Hernández-romero, I., Arenal, A., Bermejo, J., Fernández-avilés, F., Atienza, F., & Guillem, M. S. (2017). This paper must be cited as : Solving inaccuracies in anatomical models for electrocardiographic inverse problem resolution by using electrical information. 37(3), 733–740.
Brody, D. A., Warr, O. S., Wennemark, J. R., Cox, J. W., Keller, F. W., & Terry, F. H. (1971). Studies of the equivalent cardiac generator behavior of isolated turtle hearts. Circulation Research, 29(5), 512–524.
Brody, D. A., & Wennemark, J. R. (1974). Dipole ranging in isolated rabbit hearts before and after right bundle branch block’. In Cardiovascular Research (Vol. 8).
Bystricky, W. (2018). Identification of Strict Left Bundle Branch Block, Using a Moving Dipole Model. Computing in Cardiology, 2018-Septe.
Claydon, F. J., Milligan, K. L., Gray, T. E., & Mirvis, D. M. (1992). An equivalent generator representation of measured intracavitary potentials. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2, 582–583.
Dawoud, F., Wagner, G. S., Moody, G., & Horáček, B. M. (2008). Using inverse electrocardiography to image myocardial infarction-reflecting on the 2007 PhysioNet/Computers in Cardiology Challenge. Journal of Electrocardiology, 41(6), 630–635.
Gabor, D., & Nelson, C. V. (1954). Determination of the resultant dipole of the heart from measurements on the body surface. Journal of Applied Physics, 25(4), 413–416.
Geselowitz, D. B. (1964). Dipole theory in electrocardiography. The American Journal of Cardiology, 14(3), 301–306.
Geselowitz, D. B. (1965). Two Theorems Concerning the Quadrupole Applicable to Electrocardiography. IEEE Transactions on Biomedical Engineering, BME-12(3), 164–168.
Goldberger, J. J., & Ng, J. (2010). Practical signal and image processing in clinical cardiology. In Practical Signal and Image Processing in Clinical Cardiology.
Gulrajani, R. M. (1998). The forward and inverse problems of electrocardiography: Gaining a better qualitative and quantitative understanding of the heart’s electrical activity. IEEE Engineering in Medicine and Biology Magazine, 17(5).
Horáček, B. M. (1971). The Effect on Electrocardiographic Lead Vectors of Conductivity Inhomogeneities in the Human Torso. Dalhousie University.
Horan, L. G., Flowers, N. C., & Miller, C. B. (1972). A rapid assay of dipolar and extradipolar content in the human electrocardiogram. Journal of Electrocardiology, 5(3), 211–223.
Houari, K. El, Kachenoura, A., Albera, L., Bensaid, S., Karfoul, A., Boichon-Grivot, C., Rochette, M., & Hernández, A. (2018). A fast model for solving the ECG forward problem based on an evolutionary algorithm. 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2017, 2017-December(June 2018), 1–5.
Ideker, R. E., Bandura, J. P., Larsen, R. A., Cox, J. W., Keller, F. W., & Brody, D. A. (1975). Localization of Heart Vectors Produced by Epicardial Burns and Ectopic Stimuli VALIDATION OF A DIPOLE RANGING METHOD.
Kabanikhin, S. I. (2008). Definitions and examples of inverse and ill-posed problems Survey paper. J. Inv. Ill-Posed Problems, 16, 317–357.
Kay, C. F. Schwan, H. P. (1956). Specific resistance of body tissues. Circulation Research, 4(6), 664–670.
LBBB Initiative of the ISCE meeting. (2018).
Lux, R. L., Smith, C. R., Wyatt, R. F., & Abildskov, J. A. (1978). Limited Lead Selection for Estimation of Body Surface Potential Maps in Electrocardiography. IEEE Transactions on Biomedical Engineering, BME-25(3), 270–276.
Lv, W., Lee, K., Arai, T., Barrett, C. D., Hasan, M. M., Hayward, A. M., Marini, R. P., Barley, M. E., Galea, A., Hirschman, G., Armoundas, A. A., & Cohen, R. J. (2020). Accuracy of cardiac ablation catheter guidance by means of a single equivalent moving dipole inverse algorithm to identify sites of origin of cardiac electrical activation. In Journal of Interventional Cardiac Electrophysiology (Vol. 58, Issue 3).
Lynn, M. S., & Timlake, W. P. (1968). The Use of Multiple Deflations in the Numerical Solution of Singular Systems of Equations, with Applications to Potential Theory. SIAM Journal on Numerical Analysis, 5(2), 303–322.
Macfarlane, P. W., Van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., & Camm, J. (2010). Comprehensive electrocardiology. (Second Edi). Springer Science & Business Media.
Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press.
Martin Arthur’s, R., Geselowitz, D. B., Briller, S. A., & Trost, R. F. (1971). The Path of the Electrical Center of the Human Heart Determined from Surface Electrocardiograms*. In J. ELECTROCARDIOLOGY (Vol. 4, Issue 1).
Martínez, J. P., Pahlm, O., Ringborn, M., Warren, S., Laguna, P., & Sörnmo, L. (2017). The STAFF III Database: ECGs recorded during acutely induced myocardial ischemia. Computing in Cardiology, 44(September), 1–4.
McFee, R., & Baule, G. M. (2008). Research in electrocardiography and magnetocardiography. Proceedings of the IEEE, 60(3), 290–321.
Moss, A. J., Hall, W. J., Cannom, D. S., Klein, H., Brown, M. W., Daubert, J. P., Estes, N. A. M., Foster, E., Greenberg, H., Higgins, S. L., Pfeffer, M. A., Solomon, S. D., Wilber, D., & Zareba, W. (2009). Cardiac-Resynchronization Therapy for the Prevention of Heart-Failure Events. New England Journal of Medicine, 361(14), 1329–1338.
Nakane, T., Ito, T., Matsuura, N., Togo, H., & Hirata, A. (2019). Forward electrocardiogram modeling by small dipoles based on whole-body electric field analysis. IEEE Access, 7, 123463–123472.
Nakano, Y., Rashed, E. A., Nakane, T., Laakso, I., & Hirata, A. (2021). Ecg localization method based on volume conductor model and kalman filtering. Sensors, 21(13).
Nelson, C. V., Gastonguay, P. R., Wilkinson, A. F., & Voukydis, P. C. (1971). A lead system for direction and magnitude of the heart vector. Vectorcardiography, 2, 85–97.
Nelson, C. V., Rand, P. W., Angelakos, E. T., & Hugenholtz, P. G. (1972). Effect of intracardiac blood on the spatial vectorcardiogram. I. Results in the dog. In Circulation research (Vol. 31, Issue 1).
Nelson, C. V, Hodgkin, B. C., & Voukydis, P. C. (1975). Determination of the Locus of the Heart Vector from Body Surface Measurements: Model Experiments. In J. ELECTROCARDIOLOGY (Vol. 8, Issue 2).
Nguyen, M., & Schanze, T. (2017). Spatial resolution of electrical source localization depends on inter-electrode spacing and signal-to-noise ratio. Current Directions in Biomedical Engineering, 3(2), 87–90.
Odille, F., Liu, S., Van Dam, P., & Felblinger, J. (2017). Statistical variations of heart orientation in healthy adults. Computing in Cardiology, 44, 1–4.
Plonsey, R., & Barr, R. C. (2007). Bioelectricity A Quantitative Approach (Third Edit). Springer Science & Business Media.
R Core Team,. (2017). System
Rush, S. (1971). An inhomogeneous anisotropic model of the human torso for electrocardiographic studies. Medical and Biological Engineering, 9, 201–211.
Samann, F., Rausch, A., & Schanze, T. (2019). Electrical Dipole Source Localization using Hybrid Least Squares Method in combination with ICA. Current Directions in Biomedical Engineering, 5(1), 361–363.
Savard, P., Ackaoui, A., Gulrajani, R. M., Nadeau, R. A., Roberge, F. A., Guardo, R., & Dube, B. (1985). Localization of cardiac ectopic activity in man by a single moving dipole. Comparison f different computation techniques. In Journal of Electrocardiology (Vol. 18, Issue 3).
Savard, P., Mailloux, G. E., Roberge, F. A., Gulrajani, R. M., & Guardo, R. (1982). A Simulation Study of the Single Moving Dipole Representation of Cardiac Electrical Activity. IEEE Transactions on Biomedical Engineering, BME-29(10), 700–707.
Selvester, R. H., Strauss, D. G., & Wagner, G. S. (2010). Myocardial Infarction BT - Comprehensive Electrocardiology. Springer Verlag.
Starc, V., & Schlegel, T. T. (2020). Moving Dipole Determination from 12-Lead ECGs Can Improve Detection of Acute Myocardial Ischemia. Computing in Cardiology, 2020-September.
Starc, V., & Swenne, C. A. (2017). Spatial distribution and orientation of a single moving dipole computed in 12-lead ECGs of a healthy population using a spherically bounded model. Computing in Cardiology, 44, 1–4.
Strauss, D. G., Selvester, R. H., & Wagner, G. S. (2011). Defining left bundle branch block in the era of cardiac resynchronization therapy. In American Journal of Cardiology (Vol. 107, Issue 6, pp. 927–934).
Svehlikova, J., Teplan, M., & Tysler, M. (2018). Geometrical constraint of sources in noninvasive localization of premature ventricular contractions. Journal of Electrocardiology, 51(3), 370–377.
Taccardi, B., Arisi, G., Macchi, E., Baruffi, S., & Spaggiari, S. (1987). A new intracavitary probe for detecting the site of origin of ectopic ventricular beats during one cardiac cycle. Circulation, 75(1), 272–281.
Terry, F. H., Brody, D. A., Cox, J. W., Keller, F. W., & Phillips, H. A. (1971). Dipole, Quadripole, and Octapole Measurements in Isolated Beating Heart Preparations. In IEEE TRANSACTONS ON BIO-MEDICAL ENGINEERING (Vol. 18, Issue 2).
How to Cite