EFFECT OF DIFFERENT PARAMETERS OF THE BIOLOGICAL PROCESSES ON THE SPECIFIC GROWTH RATE OF NITRIFYING BACTERIA BY MEANS OF MATHEMATICAL MODELS

  • KAROJ NAJMAN
  • STEFAN PANGLISCH
  • VICTOR KATAYAMA
Keywords: Nitrification; Modeling; Solid retention time; Bioreactor; Wastewater treatment

Abstract

In this study, the biological removal of nitrogen from wastewater with relatively high ammonium
concentration is investigated by modelling and simulation. Specifically, the nitrification process, means the
oxidation of ammonium to nitrate, which is catalysed by two types of bacteria, namely
ammonium-oxidising bacteria (AOB) and nitrite-oxidising bacteria (NOB). In wastewater treatment,
ammonia oxidation lowers the pH of wastewaters with in relation to total ammonia limited alkalinity. By
reducing the pH, ammonia oxidation often stops just below pH 6-6.5. On the other hand, nitrification has
been found to occur even at low pH in reactors that process human urine, although it was not clear which
species of bacteria are involved. Against this background, this research used different mathematical
models of ammonia-oxidising bacteria (AOB). The aim is to estimate those sludge residence times as a
function of pH that can achieve complete nitrification of the NH3-N load in the influent. Quantity of base
that should be dosed to the system and the capacity of the bioreactor have been calculated using estimated
data. The values obtained have also been compared with the values from literature.

Downloads

Download data is not yet available.

References

Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S.,
& Srinath, E. G. (1976). Inhibition of
Nitrification by Ammonia and Nitrous Acid.
Journal (Water Pollution Control Federation),
48(5), 835–852.
Antoniou, P., Hamilton, J., Koopman, B., Jain, R.,
Holloway, B., Lyberatos, G., & Svoronos, S. A.
(1990). Effect of temperature and ph on the
effective maximum specific growth rate of
nitrifying bacteria. Water Research, 24(1).
https://doi.org/10.1016/0043-1354(90)90070-
M
DIN 38409-7:2005-12. DIN 38409-7:2005-12,
Deutsche Einheitsverfahren zur Wasser-,
Abwasser- und Schlammuntersuchung_-
Summarische Wirkungs- und Stoffkenngrößen
(Gruppe_H)_- Teil_7: Bestimmung der Säure-
und Basekapazität_(H_7). Berlin: Beuth
Verlag GmbH.
Downing A.L., Painter H.A. and Knowles G (1964).
Nitrification in the activated sludge process. J.
Proc. Inst. Sewage Purif, 130–153.
Ekama, G. A., & Wentzel, M. C. (2004). A predictive
model for the reactor inorganic suspended solids concentration in activated sludge
systems. Water Research, 38(19), 4093–4106.
https://doi.org/10.1016/j.watres.2004.08.005
EPA (1993). Manaul Nitrogen Control. Washington,
DC, USA:US Environmental Protection
Agency.
Fumasoli, A., Bürgmann, H., Weissbrodt, D. G.,
Wells, G. F., Beck, K., Mohn, J., . . .
Udert, K. M. (2017). Growth of
Nitrosococcus-Related Ammonia Oxidizing
Bacteria Coincides with Extremely Low pH
Values in Wastewater with High Ammonia
Content. Environmental Science &
Technology, 51(12), 6857–6866.
https://doi.org/10.1021/acs.est.7b00392
Fumasoli, A., Morgenroth, E., & Udert, K. M. (2015).
Modeling the low pH limit of Nitrosomonas
eutropha in high-strength nitrogen wastewaters.
Water Research, 83, 161–170.
https://doi.org/10.1016/j.watres.2015.06.013
Green, M., Beliavski, M., Denekamp, N., Gieseke, A.,
Beer, D. de, & Tarre, S. (2006). High
Nitrification Rate at Low pH in a Fluidized
Bed Reactor with either Chalk or Sintered
Glass as the Biofilm Carrier. Israel Journal of
Chemistry, 46(1), 53–58.
https://doi.org/10.1560/6A0G-9AK4-6LXU-F
7C7
Hellinga, C., van Loosdrecht, M.C.M. [M.C.M.], &
Heijnen, J. J. (1999). Model Based Design of a
Novel Process for Nitrogen Removal from
Concentrated Flows. Mathematical and
Computer Modelling of Dynamical Systems,
5(4), 351–371.
https://doi.org/10.1076/mcmd.5.4.351.3678
Henze, M. [M.] (2008). Biological wastewater
treatment: Principles, modelling and design.
Henze, M. E. (2000). Activated sludge models ASM1,
ASM2, ASM2d and ASM3. Scientific and
technical report: no 9.
Interactive Student Tutorial (2010, April 1.000Z).
Retrieved from
https://wps.prenhall.com/wps/media/objects/4
679/4791866/ch15_11.htm
Isamu Suzuki, Usha Dular, & S. C. Kwok (1974).
Ammonia or Ammonium Ion as Substrate for
Oxidation by Nitrosomonas europaea Cells
and Extracts. Journal of Bacteriology, 120(1),
556–558. Retrieved from
https://jb.asm.org/content/120/1/556/article-inf
o
Jubany Güell, I. (2007). Operation, modeling and
automatic control of complete and partial
nitrification of highly concentrated ammonium
wastewater. 97884690. Retrieved from
https://ddd.uab.cat/record/37074
Katayama, V. T., Deerberg, G., Londong, J., &
Ruhr-Universität Fakultät für Maschinenbau
(2018). Nutrient Recovery from
Source-separated Wastewaters by Integration
of Blackwater Treatment with Urban Farming:
Characterization of Process and Products:
Ruhr-Universität Bochum.
Kollbach, J. S., & Grömping, M. (1996).
Stickstoffrückbelastung: Stand der Technik
1996/97 ; zukünftige Entwicklungen ;
[Fachvorträge, begleitend zur Tagung am
26./27. November 1996. Neuruppin: TK-Verl.
Thomé-Kozmiensky.
Luklema, L. (1969). Factors affecting pH change in
alkaline waste water treatment—I. Water
Research, 3(12), 913–930.
https://doi.org/10.1016/0043-1354(69)90075-
X
Scearce, S. N., Benninger, R. W., Weber, A. S., &
Sherrard, J. H. (1980). Prediction of Alkalinity
Changes in the Activated Sludge Process.
Journal (Water Pollution Control Federation),
52(2), 399–405. Retrieved from
www.jstor.org/stable/25040723
Sötemann, S. W., Musvoto, E. V., Wentzel, M. C., &
Ekama, G. A. (2005). Integrated biological,
chemical and physical processes kinetic
modelling
Part 1 – Anoxic-aerobic C
and N removal in the activated sludge system.
Water SA, 31(4).
https://doi.org/10.4314/wsa.v31i4.5144
Sötemann, S. W., Wentzel, M. C., & Ekama, G. A. (2007). Mass balance-based plant-wide
wastewater treatment plant models – Part 4:
Aerobic digestion of primary and waste
activated sludges. Water SA, 32(3).
https://doi.org/10.4314/wsa.v32i3.5274
Stumm, W., & Morgan, J. J. (1996). Aquatic
chemistry: Chemical equilibria and rates in
natural waters (3rd ed.). A Wiley-Interscience
publication. New York, Chichester: Wiley.
Tarre, S., & Green, M. (2004). High-rate nitrification
at low pH in suspended- and attached-biomass
reactors. Applied and Environmental
Microbiology, 70(11), 6481–6487.
https://doi.org/10.1128/AEM.70.11.6481-6487
.2004
Tchobanoglous, G., Burton, F. L., & Stensel, H. D.
(2003). Wastewater engineering: Treatment
and reuse / Metcalf & Eddy, Inc
(International ed., 4th ed. / revised by
George Tchobanoglous, Franklin L. Burton, H.
David Stensel). McGraw-Hill series in civil
and environmental engineering. Boston,
London: McGraw-Hill.
Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., &
Burton, F. L. (2014). Wastewater engineering:
Treatment and resource recovery / Metcalf &
Eddy; AECOM (Fifth edition / revised by
George Tchobanoglous, H. David Stensel,
Ryujiro Tsuchihashi, Franklin Burton
contributing authors, Mohammad Abu-Orf,
Gregory Bowden, William Pfrang). New York,
NY: McGraw-Hill Education.
Van Hulle, S. W. H., Volcke, E. I. P., Teruel, J. L.,
Donckels, B., van Loosdrecht, M. C. M., &
Vanrolleghem, P. A. (2007). Influence of
temperature and pH on the kinetics of the
Sharon nitritation process. Journal of
Chemical Technology & Biotechnology, 82(5),
471–480. https://doi.org/10.1002/jctb.1692
WRC Report No TT16/84 (1984). Theory, Design
and Operation of Nutrient Removal Activated
Sludge Processes.
Zhou, S. (2007). Stoichiometry of biological nitrogen
transformations in wetlands and other
ecosystems. Biotechnology Journal,
2(4), 497–507. https://doi.org/10.
1002/biot.200600078
Published
2021-01-05
How to Cite
NAJMAN, K., PANGLISCH, S., & KATAYAMA, V. (2021). EFFECT OF DIFFERENT PARAMETERS OF THE BIOLOGICAL PROCESSES ON THE SPECIFIC GROWTH RATE OF NITRIFYING BACTERIA BY MEANS OF MATHEMATICAL MODELS. Journal of Duhok University, 23(2), 372-386. Retrieved from https://journal.uod.ac/index.php/uodjournal/article/view/943