PREPARATION OF SILVER NANO-PARTICLES IN BENZENE SOLVENT BY LASER ABLATION METHOD

  • MUHAJ TALIB ABAULLAH College of Science, University of Zakho, Kurdistan Region-Iraq

الملخص

Nd-yag laser with wavelength (λ) =1064nm and energy 1100 mJ was used to prepare Ag nano particles in aromatic solvent benzene for the first time in this work according to our knowledge. UV–Vis spectroscopy, X-ray diffraction (XRD), (EDX), TEM, FTIR, Photoluminescence measurement, and Raman shift were used to examine the optic, structural, as well as morphological features of Ag Nano particles. According to XRD patterns, the synthesized Ag NPs exhibit a nanocrystalline and cubic (FCC) structure. The direct optical energy gap of Ag NPs discovered to be within the range of (2.8) eV. The Photoluminescence emission spectra and excitation spectra of Ag the emission peak fixed around 380 and 430 nm respectively. When the findings from the experiment are compared to those from the reference sample, it becomes clear that benzene has substantially higher nanoparticle production efficiency and smaller particle sizes

التنزيلات

بيانات التنزيل غير متوفرة بعد.

المراجع

Hisham Imam1, Khaled A.Elsayed2, Lotfi Z. Ismail2, Mostafa Afify2 and M. Atta Khedr1"Fabrication of Silver Nanoparticles by Laser Ablation in Liquid Solution" Life Science Journal (2013). http://www.lifesciencesite.com.
Pastoriza-Santos, L.M. Liz-Marzan, [Synthesis of silver nanoprisms in DMF] Nano Lett. 2 (2002). https://doi.org/10.1021/nl025638i
Ahmed N. Abd1 • Raid A. Ismail2 • Nadir F. Habubi "Characterization of CdS nanoparticles prepared by laser ablation in methanol " J Mater Sci: Mater Electron (2015). https://doi.org/10.1007/s10854-015-3660-5
M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, [Microwave-Assisted Synthesis of Metallic Nanostructures in Solution ] Chem. Eur. J. 11 (2005).
https://doi.org/10.1002/chem.200400417.
Xi-Feng Zhang 1, Zhi-Guo Liu 1, Wei Shen 2 and Sangiliyandi Gurunathan "Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches" Int. J. Mol. Sci.( 2016). http://doi: 10.3390/ijms17091534.
B. Wiley, Y. Sun, B. Mayers, Y. Xia, [Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver ] Chem. Eur. J. 11 (2004). https://doi.org/10.1002/chem.200400927
B.J. Wiley, S.H. Im, Z.Y. Li, J. McLellan, A. Siekkinen, Y. Xia, Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis, J. Phys. Chem. B 110 (2006). https://doi.org/10.1021/jp0608628
S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods, Research in Pharmaceutical Sciences 9 (2014). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326978
N. Tarasenko, A. Butsen, E. Nevar, N. Savastenko, Synthesis of nanosized particles during laser ablation of gold in water, Appl. Surf. Sci. 252 (2006). https://doi.org/10.1016/j.apsusc.2005.07.150
M. Kawasaki, N. Nishimura, Laser fragmentation of thin Au and Ag flakes in acetone for highly productive pathway to stable metal nanoparticles, Appl. Surf. Sci. 253 (2006). https://ui.adsabs.harvard.edu/abs/2006ApSS..253.2208K
S. Prabhu, E.K Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications and toxicity effects, Int. Nano Lett. 2 (2012). https://link.springer.com/article/10.1186/2228-5326-2-32
S. Ghosh, S. Patil, M. Ahire, R. Kitture, S. Kale, K. Pardesi, S.S. Cameotra, J. Bellare, D.D Dhavale, A. Jabgunde, B.A. Chopade, Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents, Int. J. Nanomedicine 7 (2012). DOI: 10.2147/IJN.S24793
Gurunathan, S.; Park, J.H.; Han, J.W.; Kim, J.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. Int. J. Nanomed. (2015). doi: 10.2147/IJN.S83953
Li,W.R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. (2010). doi: 10.1007/s00253-009-2159-5
Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Renu, P.; Ajaykumar, P.V.; Alam, M.; Kumar, R.; et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett. (2001). https://doi.org/10.1021/nl0155274
Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed.( 2013). https://doi.org/10.1002/anie.201205923
Abdulrahman K. Ali1,2 · Sule Erten‑Ela1 · Raid A. Ismail2 · Cagdas Yavuz1
"Preparation of blue luminescence gold quantum dots using laser ablation in aromatic solvents"Applied Nanoscience https://doi.org/10.1007/s13204-021-02171-1
Das, R.; Nath, S.S.; Chakdar, D.; Gope, G.; Bhattacharjee, R. Preparation of silver nanoparticles and their characterization. J. Nanotechnol. (2009). DOI : 10.2240/azojono0129
Waseda, Y.; Matsubara, E.; Shinoda, K. X-ray Diffraction Crystallography: Introduction, Examples and Solved Problems; Springer Verlag: Berlin, Germany, (2011). https://link.springer.com/book/10.1007/978-3-642-16635-8
Ananias, D.; Paz, F.A.; Carlos, L.D.; Rocha, J. Chiral microporous rare-earth silico-germanates: Synthesis, structure and photoluminescence properties. Microporous Mesoporous Mater. (2013). 10.1016/j.micromeso.2012.04.032
Xu, Z., Hou, Y. and Sun, S. ‘‘Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag
nanoparticles with tunable plasmodic properties’’, J. Am. Chem. Soc., 129,
pp. 8698–8699 (2007). https://doi.org/10.1021/ja073057v

Anand Kumar Keshari a, Ragini Srivastava a, *, Payal Singh a, Virendra Bahadur Yadav b, Gopal Nath "Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum"Journal of Ayurveda and Integrative Medicine xxx (2018). DOI:10.1016/j.jaim.2017.11.003
M.R. Bindhu, M. Umadevi "Silver and gold nanoparticles for sensor and antibacterial applications" Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 128 (2014) 37–45. DOI: 10.1016/j.saa.2014.02.119
Saware K, Sawle B, Salimath B, Jayanthi K, Venkataraman A. Biosynthesis and characterization of silver nanoparticles using Ficus Benghalensis leaf extract. Int J Res Eng Technol (2014).
https://ijret.org/volumes/2014v03/i05/IJRET20140305158.pdf
Soumya Menon, Happy Agarwal, S. Rajesh Kumar, S. Venkat KumaR "Green Synthesis Of Silver Nanoparticles Using Medicinal Plant Acalypha Indica Leaf Extracts And Its Application As An Antioxidant And Antimicrobial Agent Against Foodborne Pathogens ", International Journal of Applied Pharmaceutics (2017).
https://doi.org/10.22159/ijap.2017v9i5.19464
Maryam Abdollahnia1 , Ali MakhdoumiID1 *, Mansour Mashreghi1,2, Hossein Eshghi "Exploring the potentials of halophilic prokaryotes from a solar saltern for synthesizing nanoparticles: The case of silver and selenium ", PloS one (2020). DOI: 10.1371/journal.pone.0229886
D. Kim, S. Jeong, J. Moon, Synthesis of silver nanoparticles using polyol process and the influence of precursor injection, Nanotechnology 17 (2006). doi: 10.1088/0957-4484/17/16/004
K.J. Lee, B.H. Jun, J. Choi, Y.I. Lee, J. Joung, Y.S. Oh, Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics, Nanotechnology 18 (2007). DOI 10.1088/0957-4484/18/33/335601
G.K. Vertelov, Y.A. Krutyakov, O.V. Efremenkova, A.Y. Olenin, G.V. Lisichkin, A versatile synthesis of highly bactericidal Myramistin stabilized silver nanoparticles, Nanotechnology 19 (2008). DOI: 10.1088/0957-4484/19/35/355707
Y.A. Krutyakov, A.A. Kudrinskiy, A.Y. Olenin, G.V. Lisichkin, Synthesis and
properties of silver nanoparticles: advances and prospects, Russ. Chem. Rev. 77
(2008). http://dx.doi.org/10.1070/RC2008v077n03ABEH003751
K.R. Brown, D.G. Walter, M. Natan, , Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape Chem. Mater. 12 (2000) 306–313. https://doi.org/10.1021/cm980065p
Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102. https://doi.org/10.1021/cr030063a
Saion, E.; Gharibshahi, E. On the theory of metal nanoparticles based on quantum mechanical calculation. J. Fundam. Sci. (2011). DOI:10.11113/mjfas.v7n1.202
Soltani, N.; Saion, E.; Erfani, M.; Rezaee, K.; Bahmanrokh, G.; Drummen, G.P.; Bahrami, A.; Hussein, M.Z. Influence of the polyvinyl pyrrolidone concentration on particle size and dispersion of ZnS nanoparticles synthesized by microwave irradiation. Int. J. Mol. Sci. (2012). doi: 10.3390/ijms131012412
Ehab Mohammed Ali, Khetam H.Rasool, Wedian K. Abad, Ahmed N. Abd "Green Synthesis, Characterization and Antimicrobial activity of CuO nanoparticles (NPs) Derived from Hibiscus sabdariffa a plant and CuCl", J.Physics and Applied Sciences ICPAS (2021). DOI 10.1088/1742-6596/1963/1/012092
Leila Gharibshahi , Elias Saion , Elham Gharibshahi, Abdul Halim Shaari and Khamirul Amin Matori "Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method", Materials (2017). doi: 10.3390/ma10040402
Barone, P.; Stranges, F.; Barberio, M.; Renzelli, D.; Bonanno, A.; Xu, F. Study of band gap of silver nanoparticles—Titanium dioxide nanocomposites. J. Chem. 2014, (2014). https://doi.org/10.1155/2014/589707
[38]. Mie, G. Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys. (1908). https://doi.org/10.1002/andp.19083300302
Devan Elumalaia, , Maduraiveeran Hemavathic, Chandrasekar Vijayalakshmi Deepaad, Patheri Kunyil Kaleenaa "Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors", Parasite Epidemiology and Control 2 (2017) . doi: 10.1016/j.parepi.2017.09.001
Maryam Abdollahnia1, Ali Makhdoumi,Mansour Mashreghi1,2, Hossein Eshghi"Exploring the potentials of halophilic prokaryotes from a solar saltern for synthesizing nanoparticles: The case of silver and selenium", PLOS ONE https://doi.org/10.1371/journal.pone.0229886 March 4, (2020).
R. Palani velana, P.M. Ayyasamya , R. Kathiravanb , B. Subashni "Rapid decolorization of synthetic melanoidin by bacterial extract and their mediated silver nanoparticles as support" , Journal of Applied Biology & Biotechnology Vol. 3 (02), pp. 006-011, (2015). DOI: 10.7324/JABB.2015.3202
Z. Paranga , A. Keshavarzb,∗, S. Farahi c, S.M. Elahi a, M. Ghorannevissa, S. Parhoodehd"Fluorescence emission spectra of silver and silver/cobalt nanoparticles" Scientia Iranica, Transactions F: Nanotechnology 19 (2012) . doi:10.1016/j.scient.2012.02.026
C. Van der Horst, B. Silwana, E. Iwuoha & V. Somerset "Synthesis and Characterization of Bismuth- Silver Nanoparticles for Electrochemical Sensor Applications" Analytical Lett. https://doi.org/10.1080/00032719.2014.979357 (2015).
Enza Fazio , Bilal Gökce, Alessandro De Giacomo, Moreno Meneghetti, Giuseppe Compagnini, Matteo Tommasini, Friedrich Waag, Andrea Lucotti, Chiara Giuseppina Zanchi, Paolo Maria Ossi, Marcella Dell’Aglio, Luisa D’Urso, Marcello Condorelli , Vittorio Scardaci , Francesca Biscaglia, Lucio Litti, Marina Gobbo, Giovanni Gallo, Marco Santoro, Sebastiano Trusso and Fortunato Neri " Nanoparticles Engineering by Pulsed Laser Ablation in Liquids: Concepts and Applications" Nanomaterials 2020, 10, 2317; doi:10.3390/nano10112317
Kevin Kelly W. Edward Billups " Synthesis of Soluble Graphite and Graphene " November 2012. DOI: 10.1021/ar300121q
منشور
2023-05-07
كيفية الاقتباس
ABAULLAH, M. T. (2023). PREPARATION OF SILVER NANO-PARTICLES IN BENZENE SOLVENT BY LASER ABLATION METHOD. مجلة جامعة دهوك, 26(1), 139-149. https://doi.org/10.26682/sjuod.2023.26.1.14
القسم
Pure and Engineering Sciences