• WASAN M. ALNAKSHABANDI Anesthesia Science, College of Health Science, University of Duhok, Kurdistan Region-Iraq
  • NARMIN SAEED MERZA Dept. of Biology,College of Science,University of Duhok, Kurdistan Region-Iraq
  • HAVAL MOHAMMED KHALED Dept. of Biology,College of Science,University of Zakho, Kurdistan Region-Iraq
  • JALADET M. S. JUBRAEL cientific Research Center, College of Science,University of Duhok, Kurdistan Region-Iraq
Keywords: KEYWORDS: ERIC, Enterococcus,  faecalis,  PCR, Virulence Genes



    Twenty five isolates of Enterococcus faecalis have been previously identified and characterized were subjected to ERIC-PCR analysis in order to study the genetic relationship with regarding to their virulence profile. Nine virulence profiles were identified according to the presence/ absence of five virulence factors; asa1,gelE, esp, cpd and ace. Most isolates (28%) were belonged to Virprofile1 asa1+,gelE+, esp+, cpd+,ace+ followed by Virprofile3asa1+,gelE-, esp+, cpd+,ace+ (20%), Virprofile4 asa1+,gelE+, esp-, cpd+,ace- accounting 16%, while virprofiles5 asa1+,gelE-,esp-,cpd+,ace+, virprofile6 asa1-,gelE+,esp+,cpd+,ace+ and virprofile8 asa1+,gelE-, esp+, cpd+,ace- representing 8%, virprofile2 asa1-,gelE-,esp-, cpd-, ace+, virprofile7 asa1+,gelE+, esp+, cpd+,ace-  and virprofile9 asa1+,gelE+, esp-, cpd+,ace+ were  4%. ERIC-PCR analysis divided isolates into two main clusters named; cluster A accounting 28% which further classified into groups; 8% isolates were belonged to A1 and 20% were belonged to A2. Most isolates were belonged to cluster B accounting 72%. This cluster was involved two groups; six isolates (33.3%) were belonged to B1 while 66.6% of isolates were assigned as B2. However, no relationship was found between virulence profiles with phylogentic groups  of the isolates.




Download data is not yet available.


Ardakani M. Afkhami and Ranjbar Reza (2016) Molecular typing of uropathogenic E. coli strains by the ERIC-PCR method; 8(4): 2291–2296.
Bachtiar E. W., Bachtiar B. M., Dewiyani S., Surono Akbar S. M. (2015) Enterococcus faecalis with capsule polysaccharides type 2 and biofilm-forming capacity in Indonesians requiring endodontic treatment. J Investig Clin Dent.;6(3):197-205.
Blanco AE, Barz M, Cavero D, Icken W, Sharifi AR, Voss M, Buxadé C, Preisinger R.(2018). Characterization of Enterococcus faecalis isolates by chicken embryo lethality assay and ERIC-PCR. Avian Pathol. ;47(1):23-32.
Emaneini, M., Aligholi, M., and Aminshahi, M. (2008). Characterization of glycopeptides, aminoglycosides and macrolide resistance among Enterococcus faecalis and Enterococcus faecium isolates from hospitals in Tehran. Pol. J. Microbiol. 57, 173–178.
Facklam RR, Sham DF. Enterococcus. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, editors (1995). Manual of clinical microbiology. 6th ed. Washington DC: American Society for Microbiology; 1995. p.308-14.
Franz, C. M., Huch, M., Abriouel, H., Holzapfel, W., and Gálvez, A. (2011). Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol. 151, 125–140.
Gira, G. (2002). Enterococci from foods. FEMS Microbiol. Rev. 26, 163–171. Kayser, F. H. (2003). Safety aspects of enterococci from the medical point of view.Int. J. Food Microbiol. 88, 255–262.
Goossens H, Ferech M, Vander Stichele R, Elseviers M; ESAC Project Group. (2005). Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet;365:579-87.
Hällgren A, Claesson C, Saeedi B, Monstein HJ, Hanberger H, Nilsson LE. (2009). Molecular detection of aggregation substance, enterococcal surface protein, and cytolysin genes and in vitro adhesion to urinary catheters of Enterococcus faecalis and E. faecium of clinical origin. Int J Med Microbiol; 299(5):323-32.
Han Ming-ming , Mu Lian-zhi, Liu Xu-ping , Zhao Jing , Liu Xiao-fei , and Liu (2014). ERIC-PCR genotyping of Pseudomonas aeruginosa isolates from haemorrhagic pneumonia cases in mink. Vet Rec Open.; 1(1): e000043.
Hoban DJ, Lascols C, Nicolle LE, Badal R, Bouchillon S, Hackel M, et al. (2012) Antimicrobial susceptibility of Enterobacteriaceae, including molecular characterization of extended-spectrum be-ta-lactamase-producing species, in urinary tract isolates from hospitalized patients in North America and Europe: results from the SMART study 2009-2010. Diagn Microbiol Infect Dis; 74:62-7.
Huang CC, Chen YS, Toh HS, Lee YL, Liu YM, Ho CM, et al. (2012). Impact of revised CLSI breakpoints for susceptibility to third-generation cephalosporins and carbapenems among Enterobacteriaceae isolates in the Asia-Pacific region: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2002-2010. Int J Antimicrob Agents;40 Suppl:S4-10.
Jamet, E., Akary, E., Poisson, M. A., Chamba, J. F., Bertrand, X., and Serror, P. (2012). Prevalence and characterization of antibiotic resistant Enterococcus faecalis in French cheeses. Food Microbiol. 31, 191–198.
Jurkovic D1, Krizková L, Sojka M, Takácová M, Dusinský R, Krajcovic J, Vandamme P, Vancanneyt M.(2007). Genetic diversity of Enterococcus faecium isolated from Bryndza cheese.Int J Food Microbiol. 1;116(1):82-7.
Khalid, Haval M., (2016). Molecular Detection Of Virulence Factors Of Enterococcus Faecalis Isolated From Urine Samples In Duhok City, Kurdistan Region/Iraq. Journal University Of Zakho 4(1): 63-72.
Kuriyama, T., Williams, D. W., Patel, M., Lewis, M. A., Jenkins, L. E., Hill, D. W., et al. (2003). Molecular characterization of clinical and environmental isolates of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis from a teaching hospital in Wales. J. Med. Microbiol. 52, 821–827.
Klibi N, Gharbi S, Masmoudi A, Ben Slama K, Poeta P, Zarazaga M, et al. (2006). Antibiotic resistance and mechanisms implicated in clinical enterococci in a Tunisian hospital. J Chemother;18(1):20-6.
Martin-Platero, A. M., Valdivia, E., Maqueda, M., and Martinez-Bueno, M.(2009). Characterization and safety evaluation of enterococci isolated from Spanish goats’ milk cheeses. Int. J. Food Microbiol. 132, 24–32.
Merza Narmin S., Mosa Azzam A., Fahd Al-deen Iman H., Abdullah Zainab H. (2018). Fingerprinting and genetic relationship among Escherichia coli strains producing B. Lactamase collected from urine using ERIC/PCR Assay. ZJPAS, 30 (3); 20-25.
Murray, B.E. (1990). The life and times of the Enterococcus. Clin. Microbiol., Rev., 3(1):46-65.
Olive D. Michael and Bean Pamela (1999). Principles and Applications of Methods for DNA-Based Typing of Microbial Organisms. J Clin Microbiol; 37(6): 1661–1669.
Ranjbar Reza, Karami Ali, Farshad Shohreh, Giammanco Giovanni M., Mammina Caterina (2014) Typing methods used in the molecular epidemiology of microbial pathogens: a how-to guide. New Microbiologica. 37, 1-15.
Reimer LG, Wilson ML, Weinstein MP.(1997) Update on clinical detection of bacteremia and fungemia. Clin Microbiol Rev. 1997;10:444-65.
Sanchez Valenzuela, A., Benomar, N., Abriouel, H., Perez Pulido, R., Martinez Canamero, M., and Galvez, A. (2012). Characterization of Enterococcus faecalis and Enterococcus faecium from wild flowers. Antonie Van Leeuwenhoek 101,701–711.
Scudeller L., Badano L., Crapis M., Pagotto A., Viale P (2009). Population-based surveillance of infectious endocarditis in an Italian region. Arch Intern Med.;169(18):1720-1723.
Versalovic, James, Koeuth, Thearith and Lupski, James R. (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research, 19( 24) : 6823 -6831.
Wei Lei, Wu Qingping, Zhang Jumei, Guo Weipeng, Chen Moutong, Xue Liang, et al., (2017). Prevalence and Genetic Diversity of Enterococcus faecalis Isolates from Mineral Water and Spring Water in China. Front Microbiol. 16;8:1109.
Weng, P. L., Ramli, R., Shamsudin, M. N., Cheah, Y. K., and Hamat, R. A. (2013). High genetic diversity of Enterococcus faecium and Enterococcus faecalis clinical isolates by pulsed-field gel electrophoresis and multilocus sequence typing from a hospital in Malaysia. Biomed. Res. Int.
Werner, G., Fleige, C., Fessler, A. T., Timke, M., Kostrzewa, M., Zischka, M., et al. (2012). Improved identification including MALDI-TOF mass spectrometry E. faecalis and Enterococcus faecium isolates from hospitals in Tehran. Pol. J. Microbiol. 57, 173–178.
Wijetunge Dona Saumya, Dunn Patricia, Wallner-Pendleton Eva, Lintner Valerie, Lu Huaguang, Kariyawasam Subhashinie (2012). Fingerprinting of poultry isolates of Enterococcus cecorum using three molecular typing methods. Journal of Veterinary Diagnostic Investigation 24(6) 1166–1171.
Wilson Lindsay A. and Sharp Paul M.(2006) Enterobacterial Repetitive Intergenic Consensus (ERIC) Sequences in Escherichia coli: Evolution and Implications for ERIC-PCR, Mol. Biol. Evol. 23(6):1156–1168.
Ye Y, Jiang Q, Wu Q, Zhang J, Lu J, Lin L. (2012). The characterization and comparison of Staphylococcus aureus by antibiotic susceptibility testing, enterobacterial repetitive intergenic consensus-polymerase chain reaction, and random amplified polymorphic DNA-polymerase chain reaction. Foodborne Pathog Dis.;9(2):168-71.
Zalipour Mehrdad, Esfahani Bahram Nasr and Havaei Seyed Asghar (2019). Phenotypic and genotypic characterization of glycopeptide, aminoglycoside and macrolide resistance among clinical isolates of Enterococcus faecalis: a multicenter based study, BMC Res Notes, 12:292
How to Cite
Pure and Engineering Sciences